Carrier density modulation in a germanium heterostructure by ferroelectric switching
暂无分享,去创建一个
David J. Smith | Stephen Jesse | Alexander A. Demkov | Sergei V. Kalinin | Toshihiro Aoki | Rama K. Vasudevan | Martha R. McCartney | Keji Lai | M. Baris Okatan | Patrick Ponath | R. Vasudevan | S. Kalinin | David J. Smith | A. Demkov | M. McCartney | S. Jesse | M. Okatan | A. Posadas | T. Aoki | K. Lai | Agham-Bayan S Posadas | Kurt D. Fredrickson | Yuan Ren | Xiaoyu Wu | Xiaoyu Wu | P. Ponath | Yuan Ren
[1] V. Wood,et al. Epitaxial growth of Pb(Zr0.2Ti0.8)O3 on Si and its nanoscale piezoelectric properties , 2001 .
[2] A. Zunger,et al. Self-interaction correction to density-functional approximations for many-electron systems , 1981 .
[3] M. Kelly,et al. Modeling and characterization of a cantilever-based near-field scanning microwave impedance microscope. , 2008, The Review of scientific instruments.
[4] Zhenping Wu,et al. Electrical properties of ferroelectric BaTiO3 thin film on SrTiO3 buffered GaAs by laser molecular beam epitaxy , 2009 .
[5] G. Capellini,et al. n-type doping of germanium from phosphine: early stages resolved at the atomic level. , 2012, Physical review letters.
[6] R. Pillarisetty,et al. Academic and industry research progress in germanium nanodevices , 2011, Nature.
[7] Hafner,et al. Ab initio molecular dynamics for liquid metals. , 1995, Physical review. B, Condensed matter.
[8] N. Lavrik,et al. Scanning Near‐Field Microwave Microscopy of VO2 and Chemical Vapor Deposition Graphene , 2013 .
[9] G. Salvatore,et al. Ferroelectric Field Effect Transistor for Memory and Switch Applications , 2011 .
[10] J. Neaton,et al. Theory of polarization enhancement in epitaxial BaTiO3/SrTiO3 superlattices , 2002, cond-mat/0211421.
[11] V. Gopalan,et al. c-axis oriented epitaxial BaTiO 3 films on „ 001 ... , 2006 .
[12] Krishna C. Saraswat,et al. Ge based high performance nanoscale MOSFETs , 2005 .
[13] J. Bruley,et al. Wetting at the BaTiO3/Pt interface , 2013 .
[14] C. Ahn,et al. Hysteretic electrical transport in BaTiO3/Ba1−xSrxTiO3/Ge heterostructures , 2013, 1311.3281.
[15] I. P. Batra,et al. Phase Transition, Stability, and Depolarization Field in Ferroelectric Thin Films , 1973 .
[16] David J. Smith,et al. Atomic and electronic structure of the ferroelectric BaTiO3/Ge(001) interface , 2014 .
[17] M. Fanciulli,et al. Evidence of trigonal dangling bonds at the Ge(111)/oxide interface by electrically detected magnetic resonance. , 2013, Physical review letters.
[18] E. Yu,et al. A Chemical Route to Monolithic Integration of Crystalline Oxides on Semiconductors , 2014 .
[19] D. Weide,et al. High-frequency near-field microscopy , 2002 .
[20] Ravi Droopad,et al. Epitaxial oxide thin films on Si(001) , 2000 .
[21] G. Kresse,et al. From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .
[22] Bruce W Wessels,et al. Epitaxial growth and strain relaxation of BaTiO3 thin films on SrTiO3 buffered (001) Si by molecular beam epitaxy , 2007 .
[23] Michael A. Kelly,et al. Nanoscale microwave microscopy using shielded cantilever probes , 2011 .
[24] A. Demkov,et al. Preparation of a clean Ge(001) surface using oxygen plasma cleaning , 2013 .
[25] Zhi-Xun Shen,et al. Batch-fabricated cantilever probes with electrical shielding for nanoscale dielectric and conductivity imaging , 2012, 1301.2402.
[26] H. Koinuma,et al. Heteroepitaxial growth of BaTiO3 films on Si by pulsed laser deposition , 1995 .
[27] J. Levy,et al. Properties of epitaxial BaTiO3 deposited on GaAs , 2013 .
[28] H. Monkhorst,et al. SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .
[29] C. Merckling,et al. Molecular beam epitaxial growth of BaTiO3 single crystal on Ge-on-Si(001) substrates , 2011 .
[30] Hafner,et al. Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. , 1994, Physical review. B, Condensed matter.
[31] D. Schlom. A Ferroelectric Oxide Made Directly on Silicon. , 2009 .
[32] R. Mckee,et al. Crystalline Oxides on Silicon: The First Five Monolayers , 1998 .
[33] Ulrike Diebold,et al. The surface science of titanium dioxide , 2003 .
[34] X. Xiang,et al. Quantitative complex electrical impedance microscopy by scanning evanescent microwave microscope , 2002 .
[35] F. C. Wellstood,et al. Near-Field Microwave Microscopy of Materials Properties , 2001 .
[36] Sergei V. Kalinin,et al. Band Excitation Scanning Probe Microscopies , 2010, Microscopy Today.
[37] G. Saint-Girons,et al. Epitaxy of BaTiO3 thin film on Si(001) using a SrTiO3 buffer layer for non-volatile memory application , 2011 .
[38] G. Kresse,et al. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .
[39] Sergei V. Kalinin,et al. Scanning Probe Microscopy: Electrical and Electromechanical Phenomena at the Nanoscale , 2016 .
[40] T. Yoshimura,et al. Ferroelectric properties of YMnO3 epitaxial films for ferroelectric-gate field-effect transistors , 2003 .
[41] Blöchl,et al. Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.
[42] R. Mckee,et al. Physical structure and inversion charge at a semiconductor interface with a crystalline oxide. , 2001, Science.
[43] Stephen Jesse,et al. Switching spectroscopy piezoresponse force microscopy of ferroelectric materials , 2006 .
[44] Kresse,et al. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.
[45] David E. Zelmon,et al. Molecular beam epitaxy growth of epitaxial barium silicide, barium oxide, and barium titanate on silicon , 1991 .
[46] Catherine Dubourdieu,et al. Switching of ferroelectric polarization in epitaxial BaTiO₃ films on silicon without a conducting bottom electrode. , 2013, Nature nanotechnology.
[47] Stephen Jesse,et al. The band excitation method in scanning probe microscopy for rapid mapping of energy dissipation on the nanoscale , 2007, 0708.4248.