Carrier density modulation in a germanium heterostructure by ferroelectric switching

[1]  V. Wood,et al.  Epitaxial growth of Pb(Zr0.2Ti0.8)O3 on Si and its nanoscale piezoelectric properties , 2001 .

[2]  A. Zunger,et al.  Self-interaction correction to density-functional approximations for many-electron systems , 1981 .

[3]  M. Kelly,et al.  Modeling and characterization of a cantilever-based near-field scanning microwave impedance microscope. , 2008, The Review of scientific instruments.

[4]  Zhenping Wu,et al.  Electrical properties of ferroelectric BaTiO3 thin film on SrTiO3 buffered GaAs by laser molecular beam epitaxy , 2009 .

[5]  G. Capellini,et al.  n-type doping of germanium from phosphine: early stages resolved at the atomic level. , 2012, Physical review letters.

[6]  R. Pillarisetty,et al.  Academic and industry research progress in germanium nanodevices , 2011, Nature.

[7]  Hafner,et al.  Ab initio molecular dynamics for liquid metals. , 1995, Physical review. B, Condensed matter.

[8]  N. Lavrik,et al.  Scanning Near‐Field Microwave Microscopy of VO2 and Chemical Vapor Deposition Graphene , 2013 .

[9]  G. Salvatore,et al.  Ferroelectric Field Effect Transistor for Memory and Switch Applications , 2011 .

[10]  J. Neaton,et al.  Theory of polarization enhancement in epitaxial BaTiO3/SrTiO3 superlattices , 2002, cond-mat/0211421.

[11]  V. Gopalan,et al.  c-axis oriented epitaxial BaTiO 3 films on „ 001 ... , 2006 .

[12]  Krishna C. Saraswat,et al.  Ge based high performance nanoscale MOSFETs , 2005 .

[13]  J. Bruley,et al.  Wetting at the BaTiO3/Pt interface , 2013 .

[14]  C. Ahn,et al.  Hysteretic electrical transport in BaTiO3/Ba1−xSrxTiO3/Ge heterostructures , 2013, 1311.3281.

[15]  I. P. Batra,et al.  Phase Transition, Stability, and Depolarization Field in Ferroelectric Thin Films , 1973 .

[16]  David J. Smith,et al.  Atomic and electronic structure of the ferroelectric BaTiO3/Ge(001) interface , 2014 .

[17]  M. Fanciulli,et al.  Evidence of trigonal dangling bonds at the Ge(111)/oxide interface by electrically detected magnetic resonance. , 2013, Physical review letters.

[18]  E. Yu,et al.  A Chemical Route to Monolithic Integration of Crystalline Oxides on Semiconductors , 2014 .

[19]  D. Weide,et al.  High-frequency near-field microscopy , 2002 .

[20]  Ravi Droopad,et al.  Epitaxial oxide thin films on Si(001) , 2000 .

[21]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[22]  Bruce W Wessels,et al.  Epitaxial growth and strain relaxation of BaTiO3 thin films on SrTiO3 buffered (001) Si by molecular beam epitaxy , 2007 .

[23]  Michael A. Kelly,et al.  Nanoscale microwave microscopy using shielded cantilever probes , 2011 .

[24]  A. Demkov,et al.  Preparation of a clean Ge(001) surface using oxygen plasma cleaning , 2013 .

[25]  Zhi-Xun Shen,et al.  Batch-fabricated cantilever probes with electrical shielding for nanoscale dielectric and conductivity imaging , 2012, 1301.2402.

[26]  H. Koinuma,et al.  Heteroepitaxial growth of BaTiO3 films on Si by pulsed laser deposition , 1995 .

[27]  J. Levy,et al.  Properties of epitaxial BaTiO3 deposited on GaAs , 2013 .

[28]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[29]  C. Merckling,et al.  Molecular beam epitaxial growth of BaTiO3 single crystal on Ge-on-Si(001) substrates , 2011 .

[30]  Hafner,et al.  Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. , 1994, Physical review. B, Condensed matter.

[31]  D. Schlom A Ferroelectric Oxide Made Directly on Silicon. , 2009 .

[32]  R. Mckee,et al.  Crystalline Oxides on Silicon: The First Five Monolayers , 1998 .

[33]  Ulrike Diebold,et al.  The surface science of titanium dioxide , 2003 .

[34]  X. Xiang,et al.  Quantitative complex electrical impedance microscopy by scanning evanescent microwave microscope , 2002 .

[35]  F. C. Wellstood,et al.  Near-Field Microwave Microscopy of Materials Properties , 2001 .

[36]  Sergei V. Kalinin,et al.  Band Excitation Scanning Probe Microscopies , 2010, Microscopy Today.

[37]  G. Saint-Girons,et al.  Epitaxy of BaTiO3 thin film on Si(001) using a SrTiO3 buffer layer for non-volatile memory application , 2011 .

[38]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[39]  Sergei V. Kalinin,et al.  Scanning Probe Microscopy: Electrical and Electromechanical Phenomena at the Nanoscale , 2016 .

[40]  T. Yoshimura,et al.  Ferroelectric properties of YMnO3 epitaxial films for ferroelectric-gate field-effect transistors , 2003 .

[41]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[42]  R. Mckee,et al.  Physical structure and inversion charge at a semiconductor interface with a crystalline oxide. , 2001, Science.

[43]  Stephen Jesse,et al.  Switching spectroscopy piezoresponse force microscopy of ferroelectric materials , 2006 .

[44]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[45]  David E. Zelmon,et al.  Molecular beam epitaxy growth of epitaxial barium silicide, barium oxide, and barium titanate on silicon , 1991 .

[46]  Catherine Dubourdieu,et al.  Switching of ferroelectric polarization in epitaxial BaTiO₃ films on silicon without a conducting bottom electrode. , 2013, Nature nanotechnology.

[47]  Stephen Jesse,et al.  The band excitation method in scanning probe microscopy for rapid mapping of energy dissipation on the nanoscale , 2007, 0708.4248.