Targeting Ephrin Receptor Tyrosine Kinase A2 with a Selective Aptamer for Glioblastoma Stem Cells

[1]  Gerolama Condorelli,et al.  Potential and Challenges of Aptamers as Specific Carriers of Therapeutic Oligonucleotides for Precision Medicine in Cancer , 2019, Cancers.

[2]  K. Skelding,et al.  Glioblastoma Multiforme: An Overview of Emerging Therapeutic Targets , 2019, Front. Oncol..

[3]  L. Ricci-Vitiani,et al.  The Discovery of RNA Aptamers that Selectively Bind Glioblastoma Stem Cells , 2019, Molecular therapy. Nucleic acids.

[4]  R. Sferra,et al.  The Small Molecule Ephrin Receptor Inhibitor, GLPG1790, Reduces Renewal Capabilities of Cancer Stem Cells, Showing Anti-Tumour Efficacy on Preclinical Glioblastoma Models , 2019, Cancers.

[5]  F. Jia,et al.  Identification of a multidimensional transcriptome signature for survival prediction of postoperative glioblastoma multiforme patients , 2018, Journal of Translational Medicine.

[6]  J. Moffat,et al.  Cotargeting Ephrin Receptor Tyrosine Kinases A2 and A3 in Cancer Stem Cells Reduces Growth of Recurrent Glioblastoma. , 2018, Cancer research.

[7]  M. Shoichet,et al.  Antibody-Antisense Oligonucleotide Conjugate Downregulates a Key Gene in Glioblastoma Stem Cells , 2018, Molecular therapy. Nucleic acids.

[8]  S. Gottschalk,et al.  Optimizing EphA2-CAR T Cells for the Adoptive Immunotherapy of Glioma , 2018, Molecular therapy. Methods & clinical development.

[9]  F. de Nigris,et al.  STAT3 Gene Silencing by Aptamer-siRNA Chimera as Selective Therapeutic for Glioblastoma , 2017, Molecular therapy. Nucleic acids.

[10]  C. Dominici,et al.  Pharmacological targeting of the ephrin receptor kinase signalling by GLPG1790 in vitro and in vivo reverts oncophenotype, induces myogenic differentiation and radiosensitizes embryonal rhabdomyosarcoma cells , 2017, Journal of Hematology & Oncology.

[11]  L. Ricci-Vitiani,et al.  Integrin α7 Is a Functional Marker and Potential Therapeutic Target in Glioblastoma. , 2017, Cell stem cell.

[12]  R. Pallini,et al.  RYK promotes the stemness of glioblastoma cells via the WNT/β-catenin pathway , 2017, Oncotarget.

[13]  M. Todaro,et al.  MiR-24 induces chemotherapy resistance and hypoxic advantage in breast cancer , 2017, Oncotarget.

[14]  M. Rusnati,et al.  Targeting glioblastoma with UniPR1331, a new and stable bioavailable small molecule inhibiting Eph–ephrin interaction: In vitro and in vivo evidence , 2016 .

[15]  L. Ricci-Vitiani,et al.  A combined microRNA-based targeted therapeutic approach to eradicate glioblastoma stem-like cells. , 2016, Journal of controlled release : official journal of the Controlled Release Society.

[16]  Deo R. Singh,et al.  EphA2 Receptor Unliganded Dimers Suppress EphA2 Pro-tumorigenic Signaling* , 2015, The Journal of Biological Chemistry.

[17]  G. Cowin,et al.  EphA2 as a Diagnostic Imaging Target in Glioblastoma: A Positron Emission Tomography/Magnetic Resonance Imaging Study , 2015, Molecular imaging.

[18]  Wenqiang Song,et al.  Eph receptor tyrosine kinases in cancer stem cells. , 2015, Cytokine & growth factor reviews.

[19]  E. Pasquale,et al.  Eph receptors and ephrins: therapeutic opportunities. , 2015, Annual review of pharmacology and toxicology.

[20]  A. Ballabio,et al.  Phosphorylation‐Regulated Degradation of the Tumor‐Suppressor Form of PED by Chaperone‐Mediated Autophagy in Lung Cancer Cells , 2014, Journal of cellular physiology.

[21]  A. Boyd,et al.  Eph receptors as therapeutic targets in glioblastoma , 2014, British Journal of Cancer.

[22]  A. Murphy,et al.  EphA2 Promotes Infiltrative Invasion of Glioma Stem Cells in vivo through Crosstalk with Akt and Regulates Stem Properties , 2014, Oncogene.

[23]  B. Tannous,et al.  Advances in stem cell therapy against gliomas. , 2013, Trends in molecular medicine.

[24]  Mark A Behlke,et al.  In vivo SELEX for Identification of Brain-penetrating Aptamers , 2013, Molecular therapy. Nucleic acids.

[25]  G. Maira,et al.  The EphA2 receptor drives self-renewal and tumorigenicity in stem-like tumor-propagating cells from human glioblastomas. , 2012, Cancer cell.

[26]  L. Cerchia,et al.  Targeting Axl with an high-affinity inhibitory aptamer. , 2012, Molecular therapy : the journal of the American Society of Gene Therapy.

[27]  Kevin W Eliceiri,et al.  NIH Image to ImageJ: 25 years of image analysis , 2012, Nature Methods.

[28]  Koji Yoshimoto,et al.  Molecular characteristics of glioblastoma with 1p/19q co-deletion , 2012, Brain Tumor Pathology.

[29]  Lihong Liu,et al.  Modern methods for delivery of drugs across the blood-brain barrier. , 2012, Advanced drug delivery reviews.

[30]  J. Hamada,et al.  Role of Eph/ephrin tyrosine kinase in malignant glioma. , 2011, Neuro-oncology.

[31]  Mauro Biffoni,et al.  Tumour vascularization via endothelial differentiation of glioblastoma stem-like cells , 2011, Nature.

[32]  S. Mittal,et al.  Emerging strategies for EphA2 receptor targeting for cancer therapeutics , 2011, Expert opinion on therapeutic targets.

[33]  G. Smyth,et al.  ELDA: extreme limiting dilution analysis for comparing depleted and enriched populations in stem cell and other assays. , 2009, Journal of immunological methods.

[34]  L. Ricci-Vitiani,et al.  Cancer Stem Cell Analysis and Clinical Outcome in Patients with Glioblastoma Multiforme , 2008, Clinical Cancer Research.

[35]  Sergey N Krylov,et al.  Aptamer-facilitated biomarker discovery (AptaBiD). , 2008, Journal of the American Chemical Society.

[36]  D. Xie,et al.  Ephrin-A1 is a negative regulator in glioma through down-regulation of EphA2 and FAK. , 2007, International journal of oncology.

[37]  Mark W. Dewhirst,et al.  Glioma stem cells promote radioresistance by preferential activation of the DNA damage response , 2006, Nature.

[38]  W. Debinski,et al.  EphA2 as a Novel Molecular Marker and Target in Glioblastoma Multiforme , 2005, Molecular Cancer Research.

[39]  I. Pollack,et al.  EphA2 as a glioma-associated antigen: a novel target for glioma vaccines. , 2005, Neoplasia.

[40]  P. Klotman,et al.  Identification and characterization of a cell membrane nucleic acid channel. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[41]  J. Szostak,et al.  In vitro selection of RNA molecules that bind specific ligands , 1990, Nature.

[42]  C. Esposito,et al.  Targeting Insulin Receptor with a Novel Internalizing Aptamer. , 2016, Molecular therapy. Nucleic acids.