When transcriptome meets metabolome: fast cellular responses of yeast to sudden relief of glucose limitation

[1]  J. Heitman,et al.  Peroxisome Function Regulates Growth on Glucose in the Basidiomycete Fungus Cryptococcus neoformans , 2006, Eukaryotic Cell.

[2]  David Botstein,et al.  Transcriptional response of steady-state yeast cultures to transient perturbations in carbon source. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[3]  L. Wu,et al.  Development and application of experimental and modeling tools for In vivo kinetic analysis in S. Cerevisiae , 2005 .

[4]  Paul A Hoskisson,et al.  Continuous culture--making a comeback? , 2005, Microbiology.

[5]  Y. Zhao,et al.  Central role of Ifh1p–Fhl1p interaction in the synthesis of yeast ribosomal proteins , 2005, The EMBO journal.

[6]  J. Thevelein,et al.  Nutrient sensing systems for rapid activation of the protein kinase A pathway in yeast. , 2005, Biochemical Society transactions.

[7]  J. Heijnen,et al.  Quantitative analysis of the microbial metabolome by isotope dilution mass spectrometry using uniformly 13C-labeled cell extracts as internal standards. , 2005, Analytical biochemistry.

[8]  J. Pronk,et al.  Two-dimensional Transcriptome Analysis in Chemostat Cultures , 2005, Journal of Biological Chemistry.

[9]  Dennis B. Troup,et al.  NCBI GEO: mining millions of expression profiles—database and tools , 2004, Nucleic Acids Res..

[10]  R. Durbin,et al.  The Sequence Ontology: a tool for the unification of genome annotations , 2005, Genome Biology.

[11]  M. Hall,et al.  TOR Regulates Ribosomal Protein Gene Expression via PKA and the Forkhead Transcription Factor FHL1 , 2004, Cell.

[12]  D. Shore,et al.  Growth-regulated recruitment of the essential yeast ribosomal protein gene activator Ifh1 , 2004, Nature.

[13]  J. Heijnen,et al.  Analysis of in vivo kinetics of glycolysis in aerobic Saccharomyces cerevisiae by application of glucose and ethanol pulses , 2004, Biotechnology and bioengineering.

[14]  S. S. Houshmandi,et al.  Recruitment of the Puf3 protein to its mRNA target for regulation of mRNA decay in yeast. , 2004, RNA.

[15]  Nicola J. Rinaldi,et al.  Transcriptional regulatory code of a eukaryotic genome , 2004, Nature.

[16]  G. Crooks,et al.  WebLogo: a sequence logo generator. , 2004, Genome research.

[17]  J. Pronk,et al.  Role of Transcriptional Regulation in Controlling Fluxes in Central Carbon Metabolism of Saccharomyces cerevisiae , 2004, Journal of Biological Chemistry.

[18]  H. Mewes,et al.  The FunCat, a functional annotation scheme for systematic classification of proteins from whole genomes. , 2004, Nucleic acids research.

[19]  Johan M Thevelein,et al.  Multi-level response of the yeast genome to glucose , 2003, Genome Biology.

[20]  J. Heijnen,et al.  Critical evaluation of sampling techniques for residual glucose determination in carbon‐limited chemostat culture of Saccharomyces cerevisiae , 2003, Biotechnology and Bioengineering.

[21]  Hans-Joachim Schüller,et al.  Transcriptional control of nonfermentative metabolism in the yeast Saccharomyces cerevisiae , 2003, Current Genetics.

[22]  J. Pronk,et al.  The Genome-wide Transcriptional Responses of Saccharomyces cerevisiae Grown on Glucose in Aerobic Chemostat Cultures Limited for Carbon, Nitrogen, Phosphorus, or Sulfur* , 2003, The Journal of Biological Chemistry.

[23]  André Boorsma,et al.  Hap4p overexpression in glucose-grown Saccharomyces cerevisiae induces cells to enter a novel metabolic state , 2002, Genome Biology.

[24]  Mark D. Robinson,et al.  FunSpec: a web-based cluster interpreter for yeast , 2002, BMC Bioinformatics.

[25]  Ronald W. Davis,et al.  The Ume6 regulon coordinates metabolic and meiotic gene expression in yeast , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[26]  J. Pronk,et al.  Reproducibility of Oligonucleotide Microarray Transcriptome Analyses , 2002, The Journal of Biological Chemistry.

[27]  H. Lange,et al.  Analysis of glycolytic intermediates in Saccharomyces cerevisiae using anion exchange chromatography and electrospray ionization with tandem mass spectrometric detection , 2002 .

[28]  Filip Rolland,et al.  Glucose-sensing and -signalling mechanisms in yeast. , 2002, FEMS yeast research.

[29]  Margaret Werner-Washburne,et al.  The genomics of yeast responses to environmental stress and starvation , 2002, Functional & Integrative Genomics.

[30]  John D. Storey,et al.  Precision and functional specificity in mRNA decay , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[31]  Roy Parker,et al.  Messenger RNA Degradation: Beginning at the End , 2002, Current Biology.

[32]  J J Heijnen,et al.  Improved rapid sampling for in vivo kinetics of intracellular metabolites in Saccharomyces cerevisiae. , 2001, Biotechnology and bioengineering.

[33]  A. Jaeschke,et al.  Mammalian TOR: A Homeostatic ATP Sensor , 2001, Science.

[34]  A. Albig,et al.  The target of rapamycin signaling pathway regulates mRNA turnover in the yeast Saccharomyces cerevisiae. , 2001, Molecular biology of the cell.

[35]  R. Tibshirani,et al.  Significance analysis of microarrays applied to the ionizing radiation response , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[36]  J. Nielsen,et al.  Network Identification and Flux Quantification in the Central Metabolism of Saccharomyces cerevisiae under Different Conditions of Glucose Repression , 2001, Journal of bacteriology.

[37]  E. Lander,et al.  Remodeling of yeast genome expression in response to environmental changes. , 2001, Molecular biology of the cell.

[38]  J. François,et al.  Reserve carbohydrates metabolism in the yeast Saccharomyces cerevisiae. , 2001, FEMS microbiology reviews.

[39]  R Parker,et al.  The Puf3 protein is a transcript‐specific regulator of mRNA degradation in yeast , 2000, The EMBO journal.

[40]  Joseph Heitman,et al.  Sok2 Regulates Yeast Pseudohyphal Differentiation via a Transcription Factor Cascade That Regulates Cell-Cell Adhesion , 2000, Molecular and Cellular Biology.

[41]  M. Piper,et al.  Regulation of the Balance of One-carbon Metabolism inSaccharomyces cerevisiae * , 2000, The Journal of Biological Chemistry.

[42]  Duboc,et al.  An interlaboratory comparison of physiological and genetic properties of four Saccharomyces cerevisiae strains. , 2000, Enzyme and microbial technology.

[43]  I. Scheffler,et al.  Glucose-regulated Turnover of mRNA and the Influence of Poly(A) Tail Length on Half-life* , 2000, Journal of Biological Chemistry.

[44]  W. H. Mager,et al.  Different roles for abf1p and a T-rich promoter element in nucleosome organization of the yeast RPS28A gene. , 2000, Nucleic acids research.

[45]  J. Collado-Vides,et al.  A web site for the computational analysis of yeast regulatory sequences , 2000, Yeast.

[46]  M. Tyers,et al.  Feedback‐regulated degradation of the transcriptional activator Met4 is triggered by the SCFMet30 complex , 2000, The EMBO journal.

[47]  R. Rolfes,et al.  ade9 is an allele of SER1 and plays an indirect role in purine biosynthesis , 1999, Yeast.

[48]  P. Blaiseau,et al.  Multiple transcriptional activation complexes tether the yeast activator Met4 to DNA , 1998, The EMBO journal.

[49]  B. Daignan-Fornier,et al.  Role of the Myb‐like protein Bas1p in Saccharomyces cerevisiae: a proteome analysis , 1998, Molecular microbiology.

[50]  B. Daignan-Fornier,et al.  Synthesis of glutamine, glycine and 10-formyl tetrahydrofolate is coregulated with purine biosynthesis in Saccharomyces cerevisiae , 1998, Molecular and General Genetics MGG.

[51]  J. Gancedo Yeast Carbon Catabolite Repression , 1998, Microbiology and Molecular Biology Reviews.

[52]  R. Parker,et al.  Isolation and characterization of Dcp1p, the yeast mRNA decapping enzyme , 1998, The EMBO journal.

[53]  Y. Surdin-Kerjan,et al.  Metabolism of sulfur amino acids in Saccharomyces cerevisiae , 1997, Microbiology and molecular biology reviews : MMBR.

[54]  M. Reuss,et al.  In vivo analysis of metabolic dynamics in Saccharomyces cerevisiae : I. Experimental observations. , 1997, Biotechnology and bioengineering.

[55]  J. Bachellerie,et al.  Guiding ribose methylation of rRNA. , 1997, Trends in biochemical sciences.

[56]  I. Scheffler,et al.  Genetic analysis of glucose regulation in saccharomyces cerevisiae: control of transcription versus mRNA turnover. , 1996, The EMBO journal.

[57]  M. Saghbini,et al.  Glucose-dependent turnover of the mRNAs encoding succinate dehydrogenase peptides in Saccharomyces cerevisiae: sequence elements in the 5' untranslated region of the Ip mRNA play a dominant role. , 1995, Molecular biology of the cell.

[58]  W. Heyer,et al.  Regulation and intracellular localization of Saccharomyces cerevisiae strand exchange protein 1 (Sep1/Xrn1/Kem1), a multifunctional exonuclease , 1995, Molecular and cellular biology.

[59]  M. Reuss,et al.  In vivo analysis of glucose-induced fast changes in yeast adenine nucleotide pool applying a rapid sampling technique. , 1993, Analytical biochemistry.

[60]  Carlos Gancedo,et al.  Trehalose‐6‐phosphate, a new regulator of yeast glycolysis that inhibits hexokinases , 1993, FEBS letters.

[61]  A. Theuvenet,et al.  Inositol 1,4,5‐trisphosphate releases Ca2+ from vacuolar membrane vesicles of Saccharomyces cerevisiae , 1993, FEBS letters.

[62]  W. A. Scheffers,et al.  Effect of benzoic acid on metabolic fluxes in yeasts: A continuous‐culture study on the regulation of respiration and alcoholic fermentation , 1992, Yeast.

[63]  I. Scheffler,et al.  Control of mRNA turnover as a mechanism of glucose repression in Saccharomyces cerevisiae , 1992, Molecular and cellular biology.

[64]  J. Gancedo,et al.  Regions in the promoter of the yeast FBP1 gene implicated in catabolite repression may bind the product of the regulatory gene MIG1 , 1991, FEBS letters.

[65]  Kim Nasmyth,et al.  The role of SWI4 and SWI6 in the activity of G1 cyclins in yeast , 1991, Cell.

[66]  J. Gancedo,et al.  Phosphorylation and inactivation of yeast fructose-bisphosphatase in vivo by glucose and by proton ionophores. A possible role for cAMP. , 2005, European journal of biochemistry.

[67]  D. E. Atkinson,et al.  Adenine nucleotide concentrations and turnover rates. Their correlation with biological activity in bacteria and yeast. , 1977, Advances in microbial physiology.