Elastic properties of Ca-based metallic glasses predicted by first-principles simulations

M. Widom,1 B. Sauerwine,1 A. M. Cheung,2 S. J. Poon,3 P. Tong,3 D. Louca,3 and G. J. Shiflet2 1Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA 2Department of Materials Science and Engineering, University of Virginia, Charlottesville, Virginia 22904, USA 3Department of Physics, University of Virginia, Charlottesville, Virginia 22904, USA (Received 10 January 2011; revised manuscript received 7 June 2011; published 15 August 2011)

[1]  J. Lewandowski,et al.  Chemistry (intrinsic) and inclusion (extrinsic) effects on the toughness and Weibull modulus of Fe-based bulk metallic glasses , 2008 .

[2]  P Ganesh,et al.  Liquid-liquid transition in supercooled silicon determined by first-principles simulation. , 2008, Physical review letters.

[3]  P. Liaw,et al.  Development and Characterization of Low-Density Ca-Based Bulk Metallic Glasses: An Overview , 2008 .

[4]  S. Poon,et al.  Poisson’s Ratio and Intrinsic Plasticity of Metallic Glasses , 2008 .

[5]  S. Poon,et al.  Mechanical properties, glass transition temperature, and bond enthalpy trends of high metalloid Fe-based bulk metallic glasses , 2008 .

[6]  J. Lewandowski,et al.  Tough Fe-based bulk metallic glasses , 2008 .

[7]  Michael Widom,et al.  Ab initio simulations of geometrical frustration in supercooled liquid Fe and Fe-based metallic glass , 2008 .

[8]  M. Kramer,et al.  Computer simulation and experimental study of elastic properties of amorphous Cu-Zr alloys , 2007 .

[9]  S. Poon,et al.  Low-density Mg-rich metallic glasses with bending ductility , 2007 .

[10]  Mo Li,et al.  Atomic scale characterization of shear bands in an amorphous metal , 2006 .

[11]  S. Poon,et al.  Critical Poisson’s ratio for plasticity in Fe–Mo–C–B–Ln bulk amorphous steel , 2006 .

[12]  M. Ashby,et al.  Metallic glasses as structural materials , 2006 .

[13]  J. Bai,et al.  Atomic packing and short-to-medium-range order in metallic glasses , 2006, Nature.

[14]  W. Wang,et al.  Fracture of brittle metallic glasses: brittleness or plasticity. , 2005, Physical review letters.

[15]  S. Poon,et al.  Ductile titanium-based glassy alloy ingots , 2005 .

[16]  Weihua Wang,et al.  Intrinsic plasticity or brittleness of metallic glasses , 2005 .

[17]  M. Mihalkovič,et al.  Ab initiocalculations of cohesive energies ofFe-based glass-forming alloys , 2004 .

[18]  Simon J. L. Billinge,et al.  PDFgetX2: a GUI-driven program to obtain the pair distribution function from X-ray powder diffraction data , 2004 .

[19]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[20]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[21]  Richard Dronskowski,et al.  Crystal orbital Hamilton populations (COHP): energy-resolved visualization of chemical bonding in solids based on density-functional calculations , 1993 .

[22]  Jackson,et al.  Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. , 1992, Physical review. B, Condensed matter.

[23]  D. G. Pettifor,et al.  Theoretical predictions of structure and related properties of intermetallics , 1992 .

[24]  J. Hafner,et al.  Structural and electronic properties of crystalline and glassy calcium−zinc compounds. II: Electronic density of states , 1989 .

[25]  J. Hafner,et al.  Structural and electronic properties of crystalline and glassy calcium-zinc compounds. I. Trigonal prismatic ordering or tetrahedral close packing , 1989 .

[26]  Hafner,et al.  Atomic and electronic structure of crystalline and amorphous alloys. I. Calcium-magnesium compounds. , 1988, Physical review. B, Condensed matter.

[27]  Hafner,et al.  Atomic and electronic structure of crystalline and amorphous alloys. II. Strong electronic bonding effects in Ca-Al compounds. , 1988, Physical review. B, Condensed matter.

[28]  Johnson,et al.  Analytic nearest-neighbor model for fcc metals. , 1988, Physical review. B, Condensed matter.

[29]  S. Aur,et al.  The structure of calcium-aluminium glasses: X-ray diffraction and computer simulation studies , 1987 .

[30]  P. Steinhardt,et al.  Bond-orientational order in liquids and glasses , 1983 .

[31]  R. I. Taylor,et al.  A quantitative demonstration of the grain boundary diffusion mechanism for the oxidation of metals , 1982 .

[32]  J. Hafner Theory of the formation of metallic glasses , 1980 .

[33]  S. Nagel,et al.  Nearly-Free-Electron Approach to the Theory of Metallic Glass Alloys , 1975 .

[34]  S. Pugh XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals , 1954 .

[35]  S. Poon,et al.  Ductility improvement of amorphous steels: Roles of shear modulus and electronic structure , 2008 .

[36]  James R. Rice,et al.  Ductile versus brittle behaviour of crystals , 1974 .