A 35.7 kb DNA fragment from the Bacillus subtilis chromosome containing a putative 12.3 kb operon involved in hexuronate catabolism and a perfectly symmetrical hypothetical catabolite-responsive element.
暂无分享,去创建一个
C Rivolta | C. Rivolta | D. Karamata | C. Mauël | B. Joris | V. Lazarevic | B. Soldo | B Joris | B Soldo | V Lazarevic | C Mauël | D Karamata | V. Lazarevic | Carlo Rivolta | Bernard Joris
[1] L. Merson-Davies,et al. Analysis of five tylosin biosynthetic genes from the tyllBA region of the Streptomyces fradiae genome. , 1994, Molecular microbiology.
[2] N. Welker,et al. Cloning and characterization of a glutamine transport operon of Bacillus stearothermophilus NUB36: effect of temperature on regulation of transcription , 1991, Journal of bacteriology.
[3] A Danchin,et al. Bacillus subtilis genome project: cloning and sequencing of the 97 kb region from 325° to 333deg; , 1993, Molecular microbiology.
[4] S. Wong,et al. Sorbitol dehydrogenase from Bacillus subtilis. Purification, characterization, and gene cloning. , 1992, The Journal of biological chemistry.
[5] D. Barstow,et al. The pMTL nic- cloning vectors. I. Improved pUC polylinker regions to facilitate the use of sonicated DNA for nucleotide sequencing. , 1988, Gene.
[6] H. Sahm,et al. Biochemical characterization and sequence analysis of the gluconate:NADP 5-oxidoreductase gene from Gluconobacter oxydans , 1995, Journal of bacteriology.
[7] Y. Fujita,et al. Specific recognition of the Bacillus subtilis gnt cis‐acting catabolite‐responsive element by a protein complex formed between CcpA and seryl‐phosphorylated HPr , 1995, Molecular microbiology.
[8] W. Nicholson,et al. Catabolite repression of α amylase gene expression in Bacillus subtilis involves a trans‐acting gene product homologous to the Escherichia coli lacl and galR repressors , 1991, Molecular microbiology.
[9] J. Devereux,et al. A comprehensive set of sequence analysis programs for the VAX , 1984, Nucleic Acids Res..
[10] A. Aronson,et al. Gene structure and precursor processing of a novel Bacillus subtilis spore coat protein , 1989, Molecular microbiology.
[11] M. Sargent. Synchronous Cultures of Bacillus subtilis Obtained by Filtration with Glass Fiber Filters , 1973, Journal of bacteriology.
[12] F. Pichinoty,et al. Nutrition carbonée et étude taxonomique de Bacillus subtilis et B. licheniformis , 1979 .
[13] E. Cundliffe,et al. Cloning and characterization of two genes from Streptomyces lividans that confer inducible resistance to lincomycin and macrolide antibiotics. , 1991, Gene.
[14] H. Mori,et al. A 718-kb DNA sequence of the Escherichia coli K-12 genome corresponding to the 12.7-28.0 min region on the linkage map. , 1996, DNA research : an international journal for rapid publication of reports on genes and genomes.
[15] N. Hugouvieux-Cotte-Pattat,et al. Hexuronate catabolism in Erwinia chrysanthemi , 1987, Journal of bacteriology.
[16] F. Blattner,et al. Analysis of the Escherichia coli genome VI: DNA sequence of the region from 92.8 through 100 minutes. , 1995, Nucleic acids research.
[17] W. Hillen,et al. Catabolite repression in Bacillus subtilis: a global regulatory mechanism for the Gram‐positive bacteria? , 1995, Molecular microbiology.
[18] F. Blattner,et al. DNA sequence and analysis of 136 kilobases of the Escherichia coli genome: organizational symmetry around the origin of replication. , 1993, Genomics.
[19] L. Merson-Davies,et al. Analysis of five tyiosin biosynthetic genes from the tyllBA region of the Streptomyces fradiae genome , 1994, Molecular microbiology.
[20] A. Wahba,et al. Uronic acid metabolism in bacteria. I. Purification and properties of uronic acid isomerase in Escherichia coli. , 1960, The Journal of biological chemistry.
[21] T. Niermann,et al. Properties and primary structure of the L-malate dehydrogenase from the extremely thermophilic archaebacterium Methanothermus fervidus. , 1990, European journal of biochemistry.
[22] R. Fleischmann,et al. Complete Genome Sequence of the Methanogenic Archaeon, Methanococcus jannaschii , 1996, Science.
[23] Mark Borodovsky,et al. GENMARK: Parallel Gene Recognition for Both DNA Strands , 1993, Comput. Chem..
[24] D. McConnell,et al. Bacillus licheniformis alpha-amylase gene, amyL, is subject to promoter-independent catabolite repression in Bacillus subtilis , 1989, Journal of bacteriology.
[25] I. Paulsen,et al. Catabolite repression and inducer control in Gram-positive bacteria. , 1996, Microbiology.
[26] J. Pouysségur,et al. Le métabolisme des hexuronides et des hexuronates chez Escherichia coli K 12: Aspects physiologiques et génétiques de sa régulation , 1974 .
[27] A. Sonenshein,et al. Transcriptional regulation of Bacillus subtilis glucose starvation-inducible genes: control of gsiA by the ComP-ComA signal transduction system , 1992, Journal of bacteriology.
[28] E. Myers,et al. Basic local alignment search tool. , 1990, Journal of molecular biology.
[29] C. Yanisch-Perron,et al. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. , 1985, Gene.
[30] D. Turner,et al. Improved free-energy parameters for predictions of RNA duplex stability. , 1986, Proceedings of the National Academy of Sciences of the United States of America.
[31] J. Hoch,et al. 1 – The Genetic Map of Bacillus subtilis , 1982 .
[32] S. Ehrlich,et al. Sequence analysis of the Bacillus subtilis chromosome region between the serA and kdg loci cloned in a yeast artificial chromosome. , 1996, Microbiology.
[33] K. Ahn,et al. Variations and coding features of the sequence spanning the replication terminus of Bacillus subtilis 168 and W23 chromosomes. , 1991, Gene.
[34] M. Weickert,et al. Site-directed mutagenesis of a catabolite repression operator sequence in Bacillus subtilis. , 1990, Proceedings of the National Academy of Sciences of the United States of America.