Fully-automatic defects classification and restoration for STM images.

[1]  G. Binnig,et al.  111) facets as the origin of reconstructed Au(110) surfaces , 1983 .

[2]  G. Binnig,et al.  Scanning tunneling microscopy-from birth to adolescence , 1987 .

[3]  Jackson D. He,et al.  STM imaging of molecular collagen and phospholipid membranes , 1988, Journal of microscopy.

[4]  C. Lieber,et al.  Scanning tunneling microscopy investigations of the electronic structure of potassium-graphite intercalation compounds , 1989 .

[5]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[6]  Tony F. Chan,et al.  Total variation improved wavelet thresholding in image compression , 2000, Proceedings 2000 International Conference on Image Processing (Cat. No.00CH37101).

[7]  I. Stensgaard,et al.  Properties of large organic molecules on metal surfaces , 2003 .

[8]  Jiebo Luo,et al.  Learning multi-label scene classification , 2004, Pattern Recognit..

[9]  Q. Henry Wu,et al.  Optimal soft morphological filter for periodic noise removal using a particle swarm optimiser with passive congregation , 2007, Signal Process..

[10]  Zhi-Hua Zhou,et al.  ML-KNN: A lazy learning approach to multi-label learning , 2007, Pattern Recognit..

[11]  J. Niedziela,et al.  Scanning Tunneling Microscopy , 2008 .

[12]  P. Lambin,et al.  Tailoring the atomic structure of graphene nanoribbons by scanning tunnelling microscope lithography. , 2008, Nature nanotechnology.

[13]  Hui Peng,et al.  Study on Suppressing White Noises and Periodic Narrow Bandwidth Noise of PD by Vertically Invariant Gray-Level Morphological Filter , 2010, 2010 International Conference on E-Product E-Service and E-Entertainment.

[14]  Yi Ma,et al.  Robust principal component analysis? , 2009, JACM.

[15]  Min-Ling Zhang,et al.  A Review on Multi-Label Learning Algorithms , 2014, IEEE Transactions on Knowledge and Data Engineering.

[16]  Frédéric Sur,et al.  Automated removal of quasiperiodic noise using frequency domain statistics , 2015, J. Electronic Imaging.

[17]  Fan Zhang,et al.  Deep Convolutional Neural Networks for Hyperspectral Image Classification , 2015, J. Sensors.

[18]  Payman Moallem,et al.  A novel adaptive Gaussian restoration filter for reducing periodic noises in digital image , 2013, Signal, Image and Video Processing.

[19]  José M. Bioucas-Dias,et al.  Restoring STM images via Sparse Coding: noise and artifact removal , 2016, ArXiv.

[20]  Dmitry Yarotsky,et al.  Error bounds for approximations with deep ReLU networks , 2016, Neural Networks.

[21]  Hiroshi Fujita,et al.  Automated Classification of Lung Cancer Types from Cytological Images Using Deep Convolutional Neural Networks , 2017, BioMed research international.

[22]  C. Coletti,et al.  STM study of exfoliated few layer black phosphorus annealed in ultrahigh vacuum , 2018, 2D Materials.

[23]  Wei Li,et al.  Diverse Region-Based CNN for Hyperspectral Image Classification , 2018, IEEE Transactions on Image Processing.

[24]  Guangcan Liu,et al.  On fusing the latent deep CNN feature for image classification , 2018, World Wide Web.

[25]  M. Gruebele,et al.  STM Imaging of Localized Surface Plasmons on Individual Gold Nanoislands. , 2018, The journal of physical chemistry letters.

[26]  Sajid Javed,et al.  On the Applications of Robust PCA in Image and Video Processing , 2018, Proceedings of the IEEE.

[27]  Wang Xin,et al.  Image processing for three defects of topography images by SPM , 2019, Chemometrics and Intelligent Laboratory Systems.