Concurrent topological design of composite structures and materials containing multiple phases of distinct Poisson’s ratios

ABSTRACT Most studies on composites assume that the constituent phases have different values of stiffness. Little attention has been paid to the effect of constituent phases having distinct Poisson’s ratios. This research focuses on a concurrent optimization method for simultaneously designing composite structures and materials with distinct Poisson’s ratios. The proposed method aims to minimize the mean compliance of the macrostructure with a given mass of base materials. In contrast to the traditional interpolation of the stiffness matrix through numerical results, an interpolation scheme of the Young’s modulus and Poisson’s ratio using different parameters is adopted. The numerical results demonstrate that the Poisson effect plays a key role in reducing the mean compliance of the final design. An important contribution of the present study is that the proposed concurrent optimization method can automatically distribute base materials with distinct Poisson’s ratios between the macrostructural and microstructural levels under a single constraint of the total mass.

[1]  O. Sigmund Tailoring materials with prescribed elastic properties , 1995 .

[2]  Wei Cheng,et al.  Hierarchical design of structures and multiphase material cells , 2016 .

[3]  P. Breitkopf,et al.  Concurrent topology optimization design of material and structure within FE2 nonlinear multiscale analysis framework , 2014 .

[4]  Yi Min Xie,et al.  Evolutionary Structural Optimization , 1997 .

[5]  Gengdong Cheng,et al.  Optimum structure with homogeneous optimum truss-like material , 2008 .

[6]  Yi Min Xie,et al.  Two-scale optimal design of structures with thermal insulation materials , 2015 .

[7]  Jakob S. Jensen,et al.  Design of materials with prescribed nonlinear properties , 2014 .

[8]  Bin Liu,et al.  The effective Young’s modulus of composites beyond the Voigt estimation due to the Poisson effect , 2009 .

[9]  O. Sigmund Morphology-based black and white filters for topology optimization , 2007 .

[10]  Yi Min Xie,et al.  Evolutionary Topology Optimization of Continuum Structures: Methods and Applications , 2010 .

[11]  Weihong Zhang,et al.  Scale‐related topology optimization of cellular materials and structures , 2006 .

[12]  Yi Min Xie,et al.  Concurrent topology optimization of structures and their composite microstructures , 2014 .

[13]  Y. Xie,et al.  A simple evolutionary procedure for structural optimization , 1993 .

[14]  O. Sigmund,et al.  Topology optimization approaches , 2013, Structural and Multidisciplinary Optimization.

[15]  Yi Min Xie,et al.  Concurrent design of composite macrostructure and cellular microstructure under random excitations , 2015 .

[16]  Huajian Gao,et al.  Poisson ratio can play a crucial role in mechanical properties of biocomposites , 2006 .

[17]  Gengdong Cheng,et al.  Multi-objective concurrent topology optimization of thermoelastic structures composed of homogeneous porous material , 2013 .

[18]  Tomasz Strek,et al.  Computational analysis of sandwich‐structured composites with an auxetic phase , 2014 .

[19]  Helder C. Rodrigues,et al.  A hierarchical model for concurrent material and topology optimisation of three-dimensional structures , 2008 .

[20]  Jun Yan,et al.  Optimum structure with homogeneous optimum cellular material for maximum fundamental frequency , 2009 .

[21]  Casper Schousboe Andreasen,et al.  How to determine composite material properties using numerical homogenization , 2014 .

[22]  Niels Olhoff,et al.  Topology optimization of continuum structures: A review* , 2001 .

[23]  M. Bendsøe Optimal shape design as a material distribution problem , 1989 .

[24]  Xu Guo,et al.  Multi-scale robust design and optimization considering load uncertainties , 2015 .

[25]  D. Mckenzie,et al.  Elastic properties of a material composed of alternating layers of negative and positive Poisson's ratio , 2009 .

[26]  V. Kobelev,et al.  Bubble method for topology and shape optimization of structures , 1994 .

[27]  I. Shufrin,et al.  Hybrid materials with negative Poisson’s ratio inclusions , 2015 .

[28]  Shiwei Zhou,et al.  On design of multi-functional microstructural materials , 2012, Journal of Materials Science.

[29]  G. Cheng,et al.  A Uniform Optimum Material Based Model for Concurrent Optimization of Thermoelastic Structures and Materials , 2008 .

[30]  P. Breitkopf,et al.  Multiscale structural topology optimization with an approximate constitutive model for local material microstructure , 2015 .

[31]  James K. Guest,et al.  Optimizing multifunctional materials: Design of microstructures for maximized stiffness and fluid permeability , 2006 .

[32]  George I. N. Rozvany,et al.  A critical review of established methods of structural topology optimization , 2009 .

[33]  Yi Min Xie,et al.  Concurrent topology optimization for minimizing frequency responses of two-level hierarchical structures , 2016 .

[34]  O. Sigmund Materials with prescribed constitutive parameters: An inverse homogenization problem , 1994 .

[35]  M. Bendsøe,et al.  Generating optimal topologies in structural design using a homogenization method , 1988 .

[36]  M. Bendsøe,et al.  Topology Optimization: "Theory, Methods, And Applications" , 2011 .

[37]  S. Torquato,et al.  Composites with extremal thermal expansion coefficients , 1996 .

[38]  Shiwei Zhou,et al.  Topology optimization of microstructures of cellular materials and composites for macrostructures , 2013 .

[39]  Yi Min Xie,et al.  Concurrent design of composite macrostructure and multi-phase material microstructure for minimum dynamic compliance , 2015 .

[40]  Y. Xie,et al.  Maximizing the effective stiffness of laminate composite materials , 2014 .

[41]  Xiaoming Wang,et al.  A level set method for structural topology optimization , 2003 .

[42]  H. Rodrigues,et al.  Hierarchical optimization of material and structure , 2002 .

[43]  M. Zhou,et al.  The COC algorithm, Part II: Topological, geometrical and generalized shape optimization , 1991 .

[44]  Yi Min Xie,et al.  Maximizing the effective Young's modulus of a composite material by exploiting the Poisson effect , 2016 .