Electronic Transition and Magnetic Coupling Regulation in Trimetallic Complexes Featuring a New Bridging Ligand Obtained by Oxidative Addition.

A series of trimetallic complexes [FeIII(μ-L)(py)]2MII(py)n (n = 2, MII = MnII, 1; FeII, 2; CoII, 3; ZnII, 4; n = 3, MII = CdII, 5) with a new bridging ligand L4- (deprotonated 1,2-N1,N2-bis(2-mercaptoanil) oxalimidic acid) were synthesized and fully characterized by elemental analysis, single-crystal X-ray crystallography, IR, and Mössbauer spectra. Interestingly, the bridging ligand was obtained by oxidative addition of the (gma•)3- ligand from the mononuclear precursor Fe(gma)py (gma = glyoxal-bis(2-mercaptoanil)). In the obtained complexes, the bridging ligand L4- coordinates to the terminal FeIII ions (intermediate-spin with SFe = 3/2) by the N, S atoms, and coordinate to the central metal MII ion by the four O atoms. The resonance structure of the bridging ligand can be described as the two 4π-electron delocalized systems connected by one single-bond (C1-C2), which is different from the electronic structure of the precursor Fe(gma)py. Remarkably, the magnetic coupling interaction can be regulated through the central metal. The ferromagnetic coupling constant J gradually decreases as MII changes from FeII to CoII and MnII, while the paramagnetic behaviors are presented when MII = ZnII and CdII, confirmed by the magnetic susceptibility measurements and further supported by using the PHI program. Furthermore, the bridging ligand to the terminal FeIII charge transfer (LMCT) transitions emerged in all complexes but the central FeII to terminal FeIII charge transfer (MMCT) only presented in complex 2, strongly supported by the UV/vis-NIR electronic spectra and TDDFT calculations.

[1]  Ho‐Chol Chang,et al.  Redox-active ligands for chemical, electrochemical, and photochemical molecular conversions , 2022, Coordination Chemistry Reviews.

[2]  M. Kirk,et al.  Protonation and Non-Innocent Ligand Behavior in Pyranopterin Dithiolene Molybdenum Complexes. , 2022, Inorganic chemistry.

[3]  F. Lloret,et al.  Iron(III) Complexes of a Hexadentate Thioether-Appended 2-Aminophenol Ligand: Redox-Driven Spin State Switchover. , 2022, Inorganic chemistry.

[4]  R. Mukherjee Assigning Ligand Redox Levels in Complexes of 2-Aminophenolates: Structural Signatures. , 2020, Inorganic chemistry.

[5]  J. Launay Mixed-Valent Compounds and their Properties - Recent Developments , 2020 .

[6]  C. Philouze,et al.  Experimental and Theoretical Identification of the Origin of Magnetic Anisotropy in Intermediate Spin Iron(III) Complexes , 2018, Chemistry.

[7]  Hans‐Jörg Himmel,et al.  Homo- and Heterobinuclear Cu and Pd Complexes with a Bridging Redox-Active Bisguanidino-Substituted Dioxolene Ligand: Electronic Structure and Metal-Ligand Electron-Transfer. , 2017, Chemistry.

[8]  W. Kaim,et al.  Interacting metal and ligand based open shell systems: Challenges for experiment and theory , 2017 .

[9]  W. DeGrado,et al.  Designed metalloprotein stabilizes a semiquinone radical. , 2016, Nature chemistry.

[10]  F. Grandjean,et al.  Electron Hopping through Double-Exchange Coupling in a Mixed-Valence Diiminobenzoquinone-Bridged Fe2 Complex. , 2015, Journal of the American Chemical Society.

[11]  I. Smolyaninov,et al.  Alkylation of Catechol with Benzhydrol: Unusual Regioselectivity in the Synthesis of o‐Quinones and Catechols , 2015 .

[12]  I. Hsu,et al.  Insight into the reactivity and electronic structure of dinuclear dinitrosyl iron complexes. , 2014, Inorganic chemistry.

[13]  V. Gessner,et al.  Methandiide as a non-innocent ligand in carbene complexes: from the electronic structure to bond activation reactions and cooperative catalysis. , 2014, Chemistry.

[14]  T. Bendikov,et al.  Iron dicarbonyl complexes featuring bipyridine-based PNN pincer ligands with short interpyridine C-C bond lengths: innocent or non-innocent ligand? , 2014, Chemistry.

[15]  Keith S. Murray,et al.  PHI: A powerful new program for the analysis of anisotropic monomeric and exchange‐coupled polynuclear d‐ and f‐block complexes , 2013, J. Comput. Chem..

[16]  H. O. Stumpf,et al.  Cobalt lawsone complexes: searching for new valence tautomers. , 2013, Dalton transactions.

[17]  S. P. Rath,et al.  Protonation of an oxo-bridged diiron unit gives two different iron centers: synthesis and structure of a new class of diiron(III)-μ-hydroxo bisporphyrins and the control of spin states by using counterions. , 2012, Chemistry.

[18]  Yan-Tuan Li,et al.  Syntheses and structures of new dicopper(II) complexes bridged by N-(2-hydroxyphenyl)-N′-(3-aminopropyl)oxamide: DNA-binding properties and cytotoxic activities , 2012 .

[19]  W. Kaim,et al.  Manifestations of noninnocent ligand behavior. , 2011, Inorganic chemistry.

[20]  S. Mobin,et al.  Redox-rich spin-spin-coupled semiquinoneruthenium dimers with intense near-IR absorption. , 2011, Inorganic chemistry.

[21]  R. V. Anavekar,et al.  EPR and optical absorption studies of Fe3+ ions in sodium borophosphate glasses , 2010 .

[22]  Adam J. Taylor,et al.  Dithiolene complexes and the nature of molybdopterin , 2010 .

[23]  A. Vlček Dithiolenes and non-innocent redox-active ligands , 2010 .

[24]  W. Kaim,et al.  Non-innocent ligands in bioinorganic chemistry—An overview , 2010 .

[25]  Karl Wieghardt,et al.  Radical Ligands Confer Nobility on Base-Metal Catalysts , 2010, Science.

[26]  Yue-jian Lin,et al.  Synthesis and characterization of molecular rectangles of half-sandwich p-cymene ruthenium complexes bearing oxamidato ligands. , 2009, Dalton transactions.

[27]  F. Illas,et al.  Good performance of the M06 family of hybrid meta generalized gradient approximation density functionals on a difficult case: CO adsorption on MgO(001). , 2008, The Journal of chemical physics.

[28]  F. Neese,et al.  Ab initio study of intriguing coordination complexes: a metal field theory picture. , 2008, The journal of physical chemistry. A.

[29]  Zhi‐Qiang Liu,et al.  Synthesis, crystal structure, and DNA-binding studies of a one-dimensional copper(II) polymer bridged both by oxamidate and thiocyanato ligands , 2008 .

[30]  K. Wieghardt,et al.  Characterization of three members of the electron-transfer series [Fe(pda)2]n (n=2-, 1-, 0) by spectroscopy and density functional theoretical calculations [pda=redox non-innocent derivatives of N,N'-bis(pentafluorophenyl)-o-phenylenediamide(2-, 1.-, 0)]. , 2008, Chemistry.

[31]  S. Grimme,et al.  Trinuclear copper complexes with triplesalen ligands: geometric and electronic effects on ferromagnetic coupling via the spin-polarization mechanism. , 2007, Chemistry.

[32]  F. Neese,et al.  Electronic structures of five-coordinate complexes of iron containing zero, one, or two pi-radical ligands: a broken-symmetry density functional theoretical study. , 2007, Chemistry.

[33]  J. Conradie,et al.  Iron(III)-nitro porphyrins: theoretical exploration of a unique class of reactive molecules. , 2006, Inorganic chemistry.

[34]  K. Wieghardt,et al.  Molecular and Electronic Structure of Five-Coordinate Complexes of Iron(II/III) Containing o-Diiminobenzosemiquinonate(1−) π Radical Ligands , 2005 .

[35]  K. Wieghardt,et al.  S = (3)/(2) <= => S = (1)/(2) spin crossover behavior in five-coordinate halido- and pseudohalido-bis(o-iminobenzosemiquinonato)iron(III) complexes. , 2003, Inorganic chemistry.

[36]  K. Wieghardt,et al.  Molecular and electronic structures of iron(II)/(III) complexes containing N,S-coordinated, closed-shell o-aminothiophenolato(1-) and o-iminothiophenolato(2-) ligands. , 2003, Inorganic chemistry.

[37]  F. Neese,et al.  Noninnocence of the ligand glyoxal-bis(2-mercaptoanil). The electronic structures of [Fe(gma)]2, [Fe(gma)(py)] x py, [Fe(gma)(CN)]1-/0, [Fe(gma)I], and [Fe(gma)(PR3)(n)] (n = 1, 2). Experimental and theoretical evidence for "excited state" coordination. , 2003, Journal of the American Chemical Society.

[38]  V. Cherkasov,et al.  Magnetic properties and redox isomerism for 4,4'-bis(semiquinone) complexes of copper. , 2001, Inorganic chemistry.

[39]  C. Krebs,et al.  Highly Variable π-Bonding in the Interaction of Iron(II) Porphyrinates with Nitrite , 2000 .

[40]  K. Raghavachari Perspective on “Density functional thermochemistry. III. The role of exact exchange” , 2000 .

[41]  J. Strähle,et al.  Synthese und Eigenschaften von Eisen(II)-Komplexen mit vier- und fünfzähnigen N,S-Chelatliganden. Kristallstruktur von [Fe(GBMA)py] · py (GBMA2− = Glyoxal-bis-(2-mercaptoanil)) , 1997 .

[42]  D. Sellmann,et al.  Übergangsmetallkomplexe mit Schwefelliganden, XCII. Oxidation von Thiolat-Amin- zu Schiffbase-Eisen(II)-Komplexen. Röntgenstrukturanalyse und Reaktivität von [Fe('N2S2')]2 (′N2S2′2- = Glyoxal-bis(2-mercaptoanil)(2 – )) / Transition Metal Complexes with Sulfur Ligands, XCII. Oxidation of Thiolate Ami , 1992 .

[43]  D. Niarchos,et al.  Mössbauer, magnetic susceptibility, and EPR studies of intermediate spin iron (III) dithiooxalato halides , 1978 .

[44]  D. Busch,et al.  Complexes of nickel(II) with cyclic tetradentate Schiff bases derived from 2-mercaptoaniline , 1968 .

[45]  S. Dähne,et al.  Coupling Principles in Organic Dyes , 1966 .

[46]  W. R. Wadt,et al.  Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals , 1985 .