3-D Data Denoising and Inpainting with the Low-Redundancy Fast Curvelet Transform

In this paper, we first present a new implementation of the 3-D fast curvelet transform, which is nearly 2.5 less redundant than the Curvelab (wrapping-based) implementation as originally proposed in Ying et al. (Proceedings of wavelets XI conference, San Diego, 2005) and Candès et al. (SIAM Multiscale Model. Simul. 5(3):861–899, 2006), which makes it more suitable to applications including massive data sets. We report an extensive comparison in denoising with the Curvelab implementation as well as other 3-D multi-scale transforms with and without directional selectivity. The proposed implementation proves to be a very good compromise between redundancy, rapidity and performance. Secondly, we exemplify its usefulness on a variety of applications including denoising, inpainting, video de-interlacing and sparse component separation. The obtained results are good with very simple algorithms and virtually no parameter to tune.

[1]  Laurent Demanet,et al.  Fast Discrete Curvelet Transforms , 2006, Multiscale Model. Simul..

[2]  Marcelo Bertalmío,et al.  An Inpainting- Based Deinterlacing Method , 2007, IEEE Transactions on Image Processing.

[3]  E. Candès New tight frames of curvelets and optimal representations of objects with C² singularities , 2002 .

[4]  Venkat Chandrasekaran,et al.  Surflets: a sparse representation for multidimensional functions containing smooth discontinuities , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..

[5]  Fionn Murtagh,et al.  Gray and color image contrast enhancement by the curvelet transform , 2003, IEEE Trans. Image Process..

[6]  Felix J. Herrmann,et al.  Non-parametric seismic data recovery with curvelet frames , 2008 .

[7]  Justin K. Romberg,et al.  Multiscale wedgelet image analysis: fast decompositions and modeling , 2002, Proceedings. International Conference on Image Processing.

[8]  오승준 [서평]「Digital Video Processing」 , 1996 .

[9]  Venkat Chandrasekaran,et al.  Representation and Compression of Multidimensional Piecewise Functions Using Surflets , 2009, IEEE Transactions on Information Theory.

[10]  Michael Elad,et al.  Submitted to Ieee Transactions on Image Processing Image Decomposition via the Combination of Sparse Representations and a Variational Approach , 2022 .

[11]  Erwin B. Bellers,et al.  Deinterlacing-an overview , 1998, Proc. IEEE.

[12]  Mohamed-Jalal Fadili,et al.  Sparse Image and Signal Processing: Wavelets, Curvelets, Morphological Diversity, by Jean-Luc Starck, Fionn Murtagh, and Jalal M. Fadili , 2010, J. Electronic Imaging.

[13]  Minh N. Do,et al.  Multidimensional Directional Filter Banks and Surfacelets , 2007, IEEE Transactions on Image Processing.

[14]  Mohamed-Jalal Fadili,et al.  Inpainting and Zooming Using Sparse Representations , 2009, Comput. J..

[15]  L. Demanet Curvelets, Wave Atoms, and Wave Equations , 2006 .

[16]  S. Mallat A wavelet tour of signal processing , 1998 .

[17]  Seungjoon Yang,et al.  Motion compensation assisted motion adaptive interlaced-to-progressive conversion , 2003, Proceedings 2003 International Conference on Image Processing (Cat. No.03CH37429).

[18]  Fionn Murtagh,et al.  Deconvolution based on the curvelet transform , 2003, Proceedings 2003 International Conference on Image Processing (Cat. No.03CH37429).

[19]  E. Candès,et al.  Curvelets: A Surprisingly Effective Nonadaptive Representation for Objects with Edges , 2000 .

[20]  Jean-Luc Starck,et al.  Image reconstruction by the wavelet transform applied to aperture synthesis , 1994 .

[21]  Fionn Murtagh,et al.  Fast communication , 2002 .

[22]  Lexing Ying,et al.  3D discrete curvelet transform , 2005, SPIE Optics + Photonics.

[23]  Arun N. Netravali,et al.  Time-recursive deinterlacing for IDTV and pyramid coding , 1990, Signal Process. Image Commun..

[24]  Felix J. Herrmann,et al.  Seismic denoising with nonuniformly sampled curvelets , 2006, Computing in Science & Engineering.

[25]  D. Donoho Wedgelets: nearly minimax estimation of edges , 1999 .

[26]  Stphane Mallat,et al.  A Wavelet Tour of Signal Processing, Third Edition: The Sparse Way , 2008 .

[27]  A. Evans,et al.  MRI simulation-based evaluation of image-processing and classification methods , 1999, IEEE Transactions on Medical Imaging.

[28]  Minh N. Do,et al.  3-D directional filter banks and surfacelets , 2005, SPIE Optics + Photonics.

[29]  David Bull,et al.  IEEE International Conference on Consumer Electronics , 2000 .

[30]  Emmanuel J. Candès,et al.  The curvelet transform for image denoising , 2002, IEEE Trans. Image Process..

[31]  E. Candès,et al.  New tight frames of curvelets and optimal representations of objects with piecewise C2 singularities , 2004 .

[32]  Ivan W. Selesnick,et al.  The double-density dual-tree DWT , 2004, IEEE Transactions on Signal Processing.

[33]  Bellers,et al.  De-interlacing Video Data , 1997, 1997 International Conference on Consumer Electronics.

[34]  Larry L. Schumaker,et al.  Curve and Surface Fitting: Saint-Malo 1999 , 2000 .

[35]  Jean-Luc Starck,et al.  Very high quality image restoration by combining wavelets and curvelets , 2001, SPIE Optics + Photonics.

[36]  A.W. Morales,et al.  Spatio-temporal edge-based median filtering for deinterlacing , 2000, 2000 Digest of Technical Papers. International Conference on Consumer Electronics. Nineteenth in the Series (Cat. No.00CH37102).

[37]  Hoon Yoo,et al.  Direction-oriented interpolation and its application to de-interlacing , 2002, IEEE Trans. Consumer Electron..

[38]  Laurent Demanet,et al.  Curvelets and wave atoms for mirror-extended images , 2007, SPIE Optical Engineering + Applications.

[39]  N. Kingsbury Complex Wavelets for Shift Invariant Analysis and Filtering of Signals , 2001 .

[40]  Alan C. Evans,et al.  MRI Simulation Based Evaluation and Classifications Methods , 1999, IEEE Trans. Medical Imaging.

[41]  D. Donoho,et al.  Redundant Multiscale Transforms and Their Application for Morphological Component Separation , 2004 .

[42]  Jianwei Ma,et al.  Three-dimensional curvelets for coherent vortex analysis of turbulence , 2007 .

[43]  D. Donoho,et al.  Simultaneous cartoon and texture image inpainting using morphological component analysis (MCA) , 2005 .