Characterizing Scales of Genetic Recombination and Antibiotic Resistance in Pathogenic Bacteria Using Topological Data Analysis

Pathogenic bacteria present a large disease burden on human health. Control of these pathogens is hampered by rampant lateral gene transfer, whereby pathogenic strains may acquire genes conferring resistance to common antibiotics. Here we introduce tools from topological data analysis to characterize the frequency and scale of lateral gene transfer in bacteria, focusing on a set of pathogens of significant public health relevance. As a case study, we examine the spread of antibiotic resistance in Staphylococcus aureus. Finally, we consider the possible role of the human microbiome as a reservoir for antibiotic resistance genes.

[1]  Martin C. J. Maiden,et al.  BIGSdb: Scalable analysis of bacterial genome variation at the population level , 2010, BMC Bioinformatics.

[2]  E. Feil,et al.  The phylogeny of Staphylococcus aureus - which genes make the best intra-species markers? , 2006, Microbiology.

[3]  George M Church,et al.  The human microbiome harbors a diverse reservoir of antibiotic resistance genes , 2010, Virulence.

[4]  Facundo Mémoli,et al.  Topological Methods for the Analysis of High Dimensional Data Sets and 3D Object Recognition , 2007, PBG@Eurographics.

[5]  Kevin J. Emmett,et al.  Parametric Inference using Persistence Diagrams: A Case Study in Population Genetics , 2014, 1406.4582.

[6]  R. Overbeek,et al.  FIGfams: yet another set of protein families , 2009, Nucleic acids research.

[7]  H. Neu,et al.  The Crisis in Antibiotic Resistance , 1992, Science.

[8]  Herbert Edelsbrunner,et al.  Computational Topology - an Introduction , 2009 .

[9]  Andreas Holzinger,et al.  Human-Computer Interaction and Knowledge Discovery (HCI-KDD): What Is the Benefit of Bringing Those Two Fields to Work Together? , 2013, CD-ARES.

[10]  Gunnar E. Carlsson,et al.  Topological estimation using witness complexes , 2004, PBG.

[11]  Moshe Giladi,et al.  Lateral Gene Transfer and the Synthesis of Thymidine , 2013 .

[12]  B. Lyon,et al.  Genetics of antimicrobial resistance in Staphylococcus aureus. , 2009, Future microbiology.

[13]  Yan Zhang,et al.  PATRIC, the bacterial bioinformatics database and analysis resource , 2013, Nucleic Acids Res..

[14]  Katherine H. Huang,et al.  Structure, Function and Diversity of the Healthy Human Microbiome , 2012, Nature.

[15]  Christopher M Thomas,et al.  Mechanisms of, and Barriers to, Horizontal Gene Transfer between Bacteria , 2005, Nature Reviews Microbiology.

[16]  H. Ochman,et al.  Lateral gene transfer and the nature of bacterial innovation , 2000, Nature.

[17]  W. Martin,et al.  The tree of one percent , 2006, Genome Biology.

[18]  Petra F. G. Wolffs,et al.  The human microbiome as a reservoir of antimicrobial resistance , 2013, Front. Microbiol..

[19]  G. Carlsson,et al.  Topology of viral evolution , 2013, Proceedings of the National Academy of Sciences.

[20]  C. Woese,et al.  Phylogenetic structure of the prokaryotic domain: The primary kingdoms , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[21]  C. Fraser,et al.  Recombination and the Nature of Bacterial Speciation , 2007, Science.

[22]  Gunnar E. Carlsson,et al.  Topology and data , 2009 .

[23]  Junhua Li,et al.  Open-source genomic analysis of Shiga-toxin-producing E. coli O104:H4. , 2011, The New England journal of medicine.

[24]  Igor Jurisica,et al.  Knowledge Discovery and interactive Data Mining in Bioinformatics - State-of-the-Art, future challenges and research directions , 2014, BMC Bioinformatics.