Soft lambda-Calculus: A Language for Polynomial Time Computation

Soft linear logic ([Lafont02]) is a subsystem of linear logic characterizing the class PTIME. We introduce Soft lambda-calculus as a calculus typable in the intuitionistic and affine variant of this logic. We prove that the (untyped) terms of this calculus are reducible in polynomial time. We then extend the type system of Soft logic with recursive types. This allows us to consider non-standard types for representing lists. Using these datatypes we examine the concrete expressiveness of Soft lambda-calculus with the example of the insertion sort algorithm.

[1]  Stephen A. Cook,et al.  A new recursion-theoretic characterization of the polytime functions , 1992, STOC '92.

[2]  Neil D. Jones,et al.  Computability and complexity - from a programming perspective , 1997, Foundations of computing series.

[3]  Jean-Yves Girard,et al.  Light Linear Logic , 1998, Inf. Comput..

[4]  Andre Scedrov,et al.  Bounded Linear Logic: A Modular Approach to Polynomial-Time Computability , 1992, Theor. Comput. Sci..

[5]  Kazushige Terui,et al.  On the Computational Complexity of Cut-Elimination in Linear Logic , 2003, ICTCS.

[6]  Andrea Asperti Light affine logic , 1998, Proceedings. Thirteenth Annual IEEE Symposium on Logic in Computer Science (Cat. No.98CB36226).

[7]  Martin Hofmann Safe recursion with higher types and BCK-algebra , 2000, Ann. Pure Appl. Log..

[8]  Patrick Lincoln,et al.  Linear logic , 1992, SIGA.

[9]  Patrick Baillot Checking Polynomial Time Complexity with Types , 2002, IFIP TCS.

[10]  Yves Lafont,et al.  Soft linear logic and polynomial time , 2004, Theor. Comput. Sci..

[11]  Kazushige Terui,et al.  Light Logic and Polynomial Time Computation , 2004 .

[12]  Martin Hofmann Linear types and non-size-increasing polynomial time computation , 2003, Inf. Comput..

[13]  Michael Mendler,et al.  The NASA STI Program Office provides , 2000 .

[14]  M. Nivat Fiftieth volume of theoretical computer science , 1988 .

[15]  Andrea Asperti,et al.  Intuitionistic Light Affine Logic , 2002, TOCL.

[16]  Nick Benton,et al.  A Term Calculus for Intuitionistic Linear Logic , 1993, TLCA.

[17]  Kazushige Terui,et al.  Light affine lambda calculus and polytime strong normalization , 2001, Proceedings 16th Annual IEEE Symposium on Logic in Computer Science.

[18]  Martin Hofmann,et al.  Linear types and non-size-increasing polynomial time computation , 1999, Proceedings. 14th Symposium on Logic in Computer Science (Cat. No. PR00158).

[19]  Helmut Schwichtenberg,et al.  Higher type recursion, ramification and polynomial time , 2000, Ann. Pure Appl. Log..

[20]  Daniel Leivant,et al.  Lambda Calculus Characterizations of Poly-Time , 1993, Fundam. Informaticae.

[21]  Samson Abramsky,et al.  Computational Interpretations of Linear Logic , 1993, Theor. Comput. Sci..