State-of-the-art review of solar design tools and methods for assessing daylighting and solar potential for building-integrated photovoltaics

Abstract Solar design can take many different forms across disciplines with different methodologies and goals, ranging from acquiring architectural visual effects to assessing illumination for daylighting and solar radiation potential on building surfaces for PV implementation. Furthermore, a capability of solar design methodologies and tools to accurately and time efficiently simulate light phenomena can greatly influence performance results and design decisions. This is especially important in complex cases such as dense urban settings with the significant surface shadowing, and vertical facades including daylighting devices and photovoltaics. Consequently, choosing a suitable approach and tool for each design phase is essential for achieving unique design and performance goals. This paper was carried out within the framework of IEA-PVPS Task 15 – BIPV and it aims to facilitate this decision for all parties involved in solar design process. Here presented, is an overview of almost 200 solar design tools, analyzing their numerous features regarding accuracy, complexity, scale, computation speed, representation as well as building design process integration in about 50 2D/3D, CAD/CAM and BIM software environments. Furthermore, tools from various fields have been analysed in a broad interdisciplinary context of solar design with a particular attention for being used for Daylighting and Building-Integrated Photovoltaics (BIPV) purposes. This approach should open many new perspectives on a potentially wider multidisciplinary usage and interpretation of solar design tools, sometimes well beyond their initial scope of work.

[1]  Arno Schlueter,et al.  Building information model based energy/exergy performance assessment in early design stages , 2009 .

[2]  Mehlika Inanici,et al.  Spectral Lighting Simulations: Computing Circadian Light , 2015, Building Simulation Conference Proceedings.

[3]  B. Marion Comparison of predictive models for photovoltaic module performance , 2008, 2008 33rd IEEE Photovoltaic Specialists Conference.

[4]  J. A. Eikelboom,et al.  Characterisation of PV Modules of New Generations , 2000 .

[5]  Etienne Sandré-Chardonnal,et al.  High dynamic, spectral, and polarized natural light environment acquisition , 2015, Electronic Imaging.

[6]  D. G. Van Antwerpen,et al.  Unbiased physically based rendering on the GPU , 2011 .

[7]  M. Rylatt,et al.  An image-based analysis of solar radiation for urban settings , 2020 .

[8]  Wenjie Yang,et al.  Performance-driven architectural design and optimization technique from a perspective of architects , 2013 .

[9]  A. P. Dobos,et al.  PVWatts Version 1 Technical Reference , 2013 .

[10]  Siân Kleindienst,et al.  Interactive expert support for early stage full-year daylighting design: a user’s perspective on Lightsolve , 2013 .

[11]  A. Reinders,et al.  Real-Time Irradiance Simulation for PV Products and Building Integrated PV in a Virtual Reality Environment , 2012, IEEE Journal of Photovoltaics.

[12]  Y. Khalidi,et al.  Building a Cloud Computing Platform for New Possibilities , 2011, Computer.

[13]  Emmanouil D. Fylladitakis,et al.  Accuracy analysis of software for the estimation and planning of photovoltaic installations , 2014 .

[14]  Hans-Peter Seidel,et al.  Physically-based simulation of twilight phenomena , 2005, TOGS.

[15]  Krzysztof Boryczko,et al.  An Improved Technique for Full Spectral Rendering , 2009, J. WSCG.

[16]  Michael D. McCool,et al.  Stratified Wavelength Clusters for Efficient Spectral Monte Carlo Rendering , 1999, Graphics Interface.

[17]  Jürgen Schumacher,et al.  Coupled Optical and Electronic Modeling of Dye-Sensitized Solar Cells for Steady-State Parameter Extraction , 2011 .

[18]  G. W. Larson,et al.  Rendering with radiance - the art and science of lighting visualization , 2004, Morgan Kaufmann series in computer graphics and geometric modeling.

[19]  J. H. Klems A New Method for Predicting the Solar Heat Gain of Complex Fenestration Systems I. Overview and Derivation of the Matrix Layer Calculation , 1993 .

[20]  Tomoyuki Nishita,et al.  Display of the earth taking into account atmospheric scattering , 1993, SIGGRAPH.

[21]  Stephen Wittkopf,et al.  Progressive photon mapping for daylight redirecting components , 2015 .

[22]  Alexa I Ruppertsberg,et al.  Rendering complex scenes for psychophysics using RADIANCE: how accurate can you get? , 2006, Journal of the Optical Society of America. A, Optics, image science, and vision.

[23]  Philipp Slusallek,et al.  State of the Art in Interactive Ray Tracing , 2001, Eurographics.

[24]  M Blumthaler,et al.  Comparison of atmospheric spectral radiance measurements from five independently calibrated systems , 2009, Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology.

[25]  Francesco Frontini,et al.  Experimental Validation of Optical Simulation for Complex Building Integrated Photovoltaic System. , 2015 .

[26]  William E. Boyson,et al.  Photovoltaic array performance model. , 2004 .

[27]  Jaakko Lehtinen,et al.  Gradient-domain metropolis light transport , 2013, ACM Trans. Graph..

[28]  M. Fontoynont,et al.  Application of the CIE test cases to assess the accuracy of lighting computer programs , 2006 .

[29]  Jeff Haberl,et al.  Historical Survey of Daylighting Calculations Methods and Their Use in Energy Performance Simulations , 2009 .

[30]  Csaba Kelemen,et al.  Simple and Robust Mutation Strategy for Metropolis Light Transport Algorithm , 2001 .

[31]  K. Bala,et al.  Lightcuts: a scalable approach to illumination , 2005, SIGGRAPH 2005.

[32]  Yves D. Willems,et al.  Bi-directional path tracing , 1993 .

[33]  Parris K. Egbert,et al.  Energy redistribution path tracing , 2005, SIGGRAPH 2005.

[34]  Philippe Bekaert,et al.  Hierarchical and stochastic algorithms for radiosity , 1999 .

[35]  Seah Hock Soon,et al.  Spectral caustic rendering of a homogeneous caustic object based on wavelength clustering and eye sensitivity , 2014, The Visual Computer.

[36]  Vlastimil Havran,et al.  Path Regeneration for Interactive Path Tracing , 2010, Eurographics.

[37]  Ronald L. Wasserstein,et al.  Monte Carlo: Concepts, Algorithms, and Applications , 1997 .

[38]  Oskar Elek,et al.  Layered Materials in Real-Time Rendering , 2022 .

[39]  Mehlika Inanici Evalution of High Dynamic Range Image-Based Sky Models in Lighting Simulation , 2010 .

[40]  John Mardaljevic,et al.  A framework for predicting the non-visual effects of daylight – Part I: photobiology- based model , 2012 .

[41]  Robert L. Cook,et al.  Distributed ray tracing , 1998 .

[42]  Carlos F. Borges Trichromatic approximation method for surface illumination , 1991 .

[43]  William A. Beckman,et al.  Improvement and validation of a model for photovoltaic array performance , 2006 .

[44]  Werner Purgathofer,et al.  Eurographics Symposium on Rendering (2004) an Analytical Model for Skylight Polarisation , 2022 .

[45]  Alexander Wilkie,et al.  An analytic model for full spectral sky-dome radiance , 2012, ACM Trans. Graph..

[46]  Greg Humphreys,et al.  Physically Based Rendering: From Theory to Implementation , 2004 .

[47]  Fan Zhang,et al.  Ray tracing via GPU rasterization , 2014, The Visual Computer.

[48]  Christoph F. Reinhart,et al.  Findings from a survey on the current use of daylight simulations in building design , 2006 .

[49]  J. Michalsky,et al.  Modeling daylight availability and irradiance components from direct and global irradiance , 1990 .

[50]  Jean-Claude Paul,et al.  Spectral Data Modeling for a Lighting Application , 1994, Comput. Graph. Forum.

[51]  Julian F. Randall On the use of photovoltaic ambient energy sources for powering indoor electronic devices , 2003 .

[52]  Jan L.M. Hensen,et al.  State of the art in lighting simulation for building science: a literature review , 2012 .

[53]  Mark D. Fairchild,et al.  Full-Spectral Color Calculations in Realistic Image Synthesis , 1999, IEEE Computer Graphics and Applications.

[54]  Shady Attia,et al.  "ARCHITECT FRIENDLY": A COMPARISON OF TEN DIFFERENT BUILDING PERFORMANCE SIMULATION TOOLS , 2009 .

[55]  Andrew McNeil,et al.  A validation of a ray-tracing tool used to generate bi-directional scattering distribution functions for complex fenestration systems , 2013 .

[56]  Tore Kolås Performance of Daylight Redirecting Venetian Blinds for Sidelighted Spaces at High Latitudes , 2013 .

[57]  Wim Turkenburg,et al.  Crystalline silicon cell performance at low light intensities , 2009 .

[58]  Mehlika Inanici,et al.  Improving the Accuracy of Measurements in Daylit Interior Scenes Using High Dynamic Range Photography , 2016 .

[59]  Henrik Wann Jensen,et al.  Global Illumination using Photon Maps , 1996, Rendering Techniques.

[60]  Hugo Pacheco,et al.  Ray Tracing in Industry An upto-date review of industrial ray tracing applications and academic contributions , 2008 .

[61]  Miljana Horvat,et al.  TOOLS AND METHODS USED BY ARCHITECTS FOR SOLAR DESIGN , 2014 .

[62]  Giorgio Graditi,et al.  Testing and Standards for new BIPV products , 2013, IECON 2013 - 39th Annual Conference of the IEEE Industrial Electronics Society.

[63]  João Pedro Guerreiro Cabeleira,et al.  Combining Rasterization and Ray Tracing Techniques to Approximate Global Illumination in Real-Time , 2010 .

[64]  Benjamin Mora,et al.  Mixing Monte Carlo and progressive rendering for improved global illumination , 2012, The Visual Computer.

[65]  Stephen Wittkopf,et al.  EvalDRC: A tool for annual characterisation of daylight redirecting components with photon mapping , 2015 .

[66]  Miguel Brito,et al.  Modelling solar potential in the urban environment: State-of-the-art review , 2015 .

[67]  William L. Carroll,et al.  Daylighting simulation: methods, algorithms, and resources , 1999 .

[68]  K. McIntosh,et al.  Overcoming the poor short wavelength spectral response of CdS/CdTe photovoltaic modules via luminescence down‐shifting: ray‐tracing simulations , 2007 .

[69]  Christoph F. Reinhart,et al.  IRRADIANCE CACHING FOR GLOBAL ILLUMINATION CALCULATION ON GRAPHICS HARDWARE , 2014 .

[70]  Eustace L. Dereniak,et al.  The Theory And Measurement Of Bidirectional Reflectance Distribution Function (Brdf) And Bidirectional Transmittance Distribution Function (BTDF) , 1981, Other Conferences.

[71]  Steve Marschner,et al.  A comprehensive framework for rendering layered materials , 2014, ACM Trans. Graph..

[72]  Jan Wienold,et al.  Physical Validation of Global Illumination Methods: Measurement and Error Analysis , 2004, Comput. Graph. Forum.

[73]  Derrick G. Kourie,et al.  Numerical verification of bidirectional reflectance distribution functions for physical plausibility , 2013, SAICSIT '13.

[74]  Christoph F. Reinhart,et al.  Experimental Validation of Autodesk® 3ds Max® Design 2009 and Daysim 3.0 , 2009 .

[75]  M. Anderberg,et al.  PVWATTS Version 2 - Enhanced Spatial Resolution for Calculating Grid-Connected PV Performance , 2001 .

[76]  Yoshinori Dobashi,et al.  Display of clouds taking into account multiple anisotropic scattering and sky light , 1996, SIGGRAPH.

[77]  Pat Hanrahan,et al.  Ray tracing on programmable graphics hardware , 2002, SIGGRAPH Courses.

[78]  J. Mardaljevic Daylight simulation : validation, sky models and daylight coefficients. , 1999 .

[79]  Christoph F. Reinhart,et al.  URBAN DAYLIGHT SIMULATION CALCULATING THE DAYLIT AREA OF URBAN DESIGNS , 2012 .

[80]  G. Seckmeyer,et al.  Validation of spectral sky radiance derived from all-sky camera images – a case study , 2014 .

[81]  Leonidas J. Guibas,et al.  Metropolis light transport , 1997, SIGGRAPH.

[82]  Turner Whitted,et al.  An improved illumination model for shaded display , 1979, CACM.

[83]  Donald P. Greenberg,et al.  FAST COMPUTATION OF INCIDENT SOLAR RADIATION FROM PRELIMINARY TO FINAL BUILDING DESIGN , 2011 .

[84]  J. F. Randall,et al.  COMPARISON OF 6 PHOTOVOLTAIC MATERIALS ACROSS 4 ORDERS OF MAGNITUDE OF INTENSITY , 2001 .

[85]  Andrew McNeil,et al.  A validation of the Radiance three-phase simulation method for modelling annual daylight performance of optically complex fenestration systems , 2013 .

[86]  Christoph F. Reinhart,et al.  The simulation of annual daylight illuminance distributions — a state-of-the-art comparison of six RADIANCE-based methods , 2000 .

[87]  John L. Wright,et al.  The Complex Fenestration Construction: a practical approach for modelling windows with shading devices in ESP-r , 2012 .

[88]  Leonidas J. Guibas,et al.  Robust Monte Carlo methods for light transport simulation , 1997 .

[89]  Juan Pineda,et al.  A parallel algorithm for polygon rasterization , 1988, SIGGRAPH.

[90]  Jens Christoffersen,et al.  Daylight calculations in practice: An investigation of the ability of nine daylight simulation programs to calculate the daylight factor in five typical rooms , 2013 .

[91]  Stephen Hill,et al.  Physically based shading in theory and practice , 2016, SIGGRAPH Courses.

[92]  Steve Marschner,et al.  Discrete stochastic microfacet models , 2014, ACM Trans. Graph..

[93]  Karsten Bittkau,et al.  Ray tracing for the optics at nano‐textured ZnO–air and ZnO–silicon interfaces , 2011 .

[94]  Niels Jørgen Christensen,et al.  Photon maps in bidirectional Monte Carlo ray tracing of complex objects , 1995, Comput. Graph..

[95]  Yukiharu Uraoka,et al.  Ray-trace simulation of light trapping in silicon solar cell with texture structures , 2006 .

[96]  K. Bala,et al.  Multidimensional lightcuts , 2006, SIGGRAPH 2006.

[97]  Christoph F. Reinhart,et al.  Current daylighting design practice: a survey , 2008 .

[98]  P. Tregenza,et al.  Daylight coefficients , 1983 .

[99]  Thomas Bashford-Rogers,et al.  A Machine-Learning-Driven Sky Model , 2017, IEEE Computer Graphics and Applications.

[100]  Mark S. Peercy,et al.  Linear color representations for full speed spectral rendering , 1993, SIGGRAPH.

[101]  N. Martín,et al.  Annual angular reflection losses in PV modules , 2005 .

[102]  Leonidas J. Guibas,et al.  Optimally combining sampling techniques for Monte Carlo rendering , 1995, SIGGRAPH.

[103]  Markus Schubert,et al.  Solar Cell Performance Under Different Illumination Conditions , 2001 .

[104]  Jaakko Lehtinen,et al.  Gradient-domain path tracing , 2015, ACM Trans. Graph..

[105]  Michael F. Cohen,et al.  Radiosity and realistic image synthesis , 1993 .

[106]  Steve Marschner,et al.  Manifold exploration , 2012, ACM Trans. Graph..

[107]  David Stuart Robertson,et al.  Parallelization of Radiance For Real Time Interactive Lighting Visualization Walkthroughs , 1999, ACM/IEEE SC 1999 Conference (SC'99).

[108]  Robert L. Cook,et al.  The Reyes image rendering architecture , 1987, SIGGRAPH.

[109]  Roland Schregle,et al.  Daylight simulation with photon maps , 2005 .

[110]  D. Robinson,et al.  Irradiation modelling made simple: the cumulative sky approach and its applications , 2004 .

[111]  Andrew S. Glassner,et al.  Principles of Digital Image Synthesis , 1995 .

[112]  Alexander Wilkie,et al.  Adding a Solar-Radiance Function to the Hošek-Wilkie Skylight Model , 2013, IEEE Computer Graphics and Applications.

[113]  Peter Shirley,et al.  Monte Carlo techniques for direct lighting calculations , 1996, TOGS.

[114]  Jon Hand,et al.  CONTRASTING THE CAPABILITIES OF BUILDING ENERGY PERFORMANCE SIMULATION PROGRAMS , 2008 .

[115]  Donald P. Greenberg,et al.  A radiosity method for non-diffuse environments , 1986, SIGGRAPH.

[116]  J.E. Cotter RaySim 6.0: a free geometrical ray tracing program for silicon solar cells , 2005, Conference Record of the Thirty-first IEEE Photovoltaic Specialists Conference, 2005..

[117]  Greg Ward,et al.  Picture Perfect RGB Rendering Using Spectral Prefiltering and Sharp Color Primaries , 2002, Rendering Techniques.

[118]  Donald P. Greenberg,et al.  A framework for the experimental comparison of solar and skydome illumination , 2014, ACM Trans. Graph..

[119]  R. Seals,et al.  The development and verification of the Perez diffuse radiation model , 1988 .

[120]  Stephen Lin,et al.  Global illumination with radiance regression functions , 2013, ACM Trans. Graph..

[121]  H. Jensen,et al.  Wavelet importance sampling: efficiently evaluating products of complex functions , 2005, SIGGRAPH 2005.

[122]  Parry Moon,et al.  Light distribution from rectangular sources , 1946 .

[123]  Karim S. Karim,et al.  Low light conditions modelling for building integrated photovoltaic (BIPV) systems , 2004 .

[124]  Spencer W. Thomas Dispersive refraction in ray tracing , 2005, The Visual Computer.

[125]  J. Michalsky,et al.  All-weather model for sky luminance distribution—Preliminary configuration and validation , 1993 .

[126]  Wim Turkenburg,et al.  Using CAD software to simulate PV energy yield – The case of product integrated photovoltaic operated under indoor solar irradiation , 2010 .

[127]  Marko Topič,et al.  OPTICAL MODEL FOR THIN-FILM PHOTOVOLTAIC DEVICES WITH LARGE SURFACE TEXTURES AT THE FRONT SIDE , 2012 .

[128]  Alexander Keller,et al.  Instant radiosity , 1997, SIGGRAPH.

[129]  B. Marion Overview of the PV Module Model in PVWatts , 2010 .

[130]  Timothy R. Kol Analytical sky simulation , 2014 .

[131]  Fabrice Neyret,et al.  Precomputed Atmospheric Scattering , 2008, Comput. Graph. Forum.

[132]  W. Marion,et al.  A new solar radiation data manual for flat‐plate and concentrating collectors , 1994 .

[133]  N.H. Reich,et al.  Using CAD software to simulate PV energy yield: Predicting the charge yield of solar cells incorporated into a PV powered consumer product under 3D-irradiation conditions , 2009, 2009 34th IEEE Photovoltaic Specialists Conference (PVSC).

[134]  How to Maintain Neutral Daylight Illumination with SageGlass® Electrochromic Glazing , 2014 .

[135]  Johannes Hanika,et al.  Hero Wavelength Spectral Sampling , 2014, Comput. Graph. Forum.

[136]  Kyuman Cho,et al.  An optical simulation algorithm based on ray tracing technique for light absorption in thin film solar cells , 2011 .

[137]  Christoph F. Reinhart Daylight performance predictions , 2019, Building Performance Simulation for Design and Operation.

[138]  W. Sprenger Electricity yield simulation of complex BIPV systems , 2013 .

[139]  T. Muller,et al.  Predictive rendering of composite materials: a multi-scale approach , 2015, Electronic Imaging.

[140]  Pierre Poulin,et al.  Linear efficient antialiased displacement and reflectance mapping , 2013, ACM Trans. Graph..

[141]  R. Compagnon Solar and daylight availability in the urban fabric , 2004 .

[142]  Y. Hishikawa,et al.  Irradiance-dependence and translation of the I-V characteristics of crystalline silicon solar cells , 2000, Conference Record of the Twenty-Eighth IEEE Photovoltaic Specialists Conference - 2000 (Cat. No.00CH37036).

[143]  Emanuele Naboni,et al.  Extending the use of parametric simulation in practice through a cloud based online service , 2014 .

[144]  Steve Ransome,et al.  Characterising PV Modules Under Outdoor Conditions: What’s Most Important for Energy Yield , 2011 .

[145]  Alexander Wilkie,et al.  Arbitrarily layered micro-facet surfaces , 2007, GRAPHITE '07.

[146]  Angelina H.M.E. Reinders A design method to assess the accessibility of light on PV cells in an arbitrary geometry by means of ambient occlusion , 2007 .

[147]  Pat Hanrahan,et al.  A rapid hierarchical radiosity algorithm , 1991, SIGGRAPH.

[148]  J. F. Randall,et al.  Is AM1.5 applicable in practice? Modelling eight photovoltaic materials with respect to light intensity and two spectra , 2003 .

[149]  Shady Attia,et al.  The ‘Architect-friendliness’ Of Six Building Performance Simulation Tools: A Comparative Study , 2011 .

[150]  Francesco Frontini Daylight and Solar Control in Buildings: General Evaluation and Optimization of a New Angle Selective Glazing Facade , 2011 .

[151]  Matthias Zwicker,et al.  Progressive photon beams , 2011, ACM Trans. Graph..

[152]  Peter-Pike J. Sloan,et al.  Interactive ray tracing , 2005, SIGGRAPH Courses.

[153]  P. R. Tregenza,et al.  Subdivision of the sky hemisphere for luminance measurements , 1987 .

[154]  Peter Shirley,et al.  A practical analytic model for daylight , 1999, SIGGRAPH.

[155]  Jan Wienold,et al.  Fener: A Radiance-based modelling approach to assess the thermal and daylighting performance of complex fenestration systems in office spaces , 2015 .

[156]  Shady Attia,et al.  A comparative study of the ‘architect-friendliness’ of six building performance simulation tools , 2010 .

[157]  Alessandra Zanelli,et al.  Dynamic Visualization of Optical and Energy Yield Co-Simulation of New Generation BIPV Envelope in Early Design Phase Using Custom Ray Tracing Algorithm in Python , 2014 .

[158]  Siobhan Francois Rockcastle,et al.  Beyond Illumination: An Interactive Simulation Framework For Non-visual And Perceptual Aspects Of Daylighting Performance , 2013, Building Simulation Conference Proceedings.

[159]  J. Schmid,et al.  Determination of energy output losses due to shading of building-integrated photovoltaic arrays using a raytracing technique , 1996 .

[160]  Jaakko Lehtinen,et al.  Gradient-Domain Bidirectional Path Tracing , 2015, EGSR.

[161]  Bryce S. Richards,et al.  Luminescent solar concentrators: From experimental validation of 3D ray-tracing simulations to coloured stained-glass windows for BIPV , 2014 .

[162]  James T. Kajiya,et al.  The rendering equation , 1998 .

[163]  M. Teich,et al.  Fundamentals of Photonics , 1991 .

[164]  J. M. Ruiz,et al.  A new model for PV modules angular losses under field conditions , 2002 .

[165]  Wolfgang Heidrich,et al.  Bidirectional importance sampling for direct illumination , 2005, EGSR '05.

[166]  N. Martín,et al.  Calculation of the PV modules angular losses under field conditions by means of an analytical model , 2002 .

[167]  Peter Shirley,et al.  Physically based lighting calculations for computer graphics , 1991 .

[168]  Alexander Keller,et al.  Unbiased Global Illumination with Participating Media , 2008 .

[169]  Eric P. Lafortune,et al.  Mathematical Models and Monte Carlo Algorithms for Physically Based Rendering , 1995 .

[170]  Nate Blair,et al.  Validation of multiple tools for flat plate photovoltaic modeling against measured data , 2014, 2014 IEEE 40th Photovoltaic Specialist Conference (PVSC).

[171]  André Kostro,et al.  Principles of Monte-Carlo ray-tracing simulations of quantum dot solar concentrators , 2007 .

[172]  Philipp Slusallek,et al.  Grand Challenges: Material Models in the Automotive Industry , 2013, Material Appearance Modeling.

[173]  John C. Stover Optical Scattering: Measurements and Analysis, Third Edition , 2012 .

[174]  Anders Steen-Nilsen Dynge,et al.  Optical modelling for photovoltaic panels , 2013 .

[175]  John Mardaljevic,et al.  Validation of a lighting simulation program under real sky conditions , 1995 .

[176]  H. H. Safwat,et al.  Determination of the optimum orientations for the double-exposure, flat-plate collector and its reflectors , 1966 .

[177]  Kyle Konis,et al.  A novel circadian daylight metric for building design and evaluation , 2017 .

[178]  Kevin W. Houser,et al.  Toward the Accuracy of Lighting Simulations in Physically Based Computer Graphics Software , 1999 .

[179]  Gregory J. Ward,et al.  A New Technique for Computer Simulation of Illuminated Spaces , 1988 .

[180]  Jaime M. L. Gagne An interactive performance-based expert system for daylighting in architectural design , 2011 .

[181]  Tapas K. Mallick,et al.  Optical characterisation and optimisation of a static Window Integrated Concentrating Photovoltaic system , 2013 .

[182]  M. Modest Radiative heat transfer , 1993 .

[183]  Wojciech Matusik,et al.  A data-driven reflectance model , 2003, ACM Trans. Graph..

[184]  Clifford W. Hansen,et al.  Outdoor PV Performance Evaluation of Three Different Models: Single-Diode, SAPM and Loss Factor Model , 2013 .

[185]  D. F. Menicucci,et al.  User`s manual for PVFORM: A photovoltaic system simulation program for stand-alone and grid-interactive applications , 1989 .

[186]  P. Ineichen,et al.  A new simplified version of the perez diffuse irradiance model for tilted surfaces , 1987 .