The thermal state of the upper mantle; No role for mantle plumes

A variety of geophysical data indicates that long wavelength temperature variations of the asthenosphere depart from the mean by ±200°C, not the ±20°C adopted by plume theoreticians. The ‘normal’ variation, caused by plate tectonic processes (subduction cooling, continental insulation, small‐scale convection) encompasses the temperature excesses that have been attributed to hot jets and thermal plumes. Geophysical estimates of the average potential temperature of the upper mantle are about 1400°C. Asthenospheric convection at ridges, rifts and fracture zones and at the onset of continental breakup is intrinsically 3D, giving rise to shallow pseudoplume‐like structures without deep thermal instabilities. Deep narrow thermal plumes are unnecessary and are precluded by uplift and subsidence data. The locations and volumes of ‘midplate’ volcanism appear to be controlled by lithospheric architecture, stress and cracks.

[1]  D. Turcotte,et al.  How many plumes are there , 1999 .

[2]  A. Cazenave,et al.  Present and past regional ridge segmentation: Evidence in Geoid data , 1993 .

[3]  J. Theissing,et al.  The dynamics of plume-ridge interaction, 1: Ridge-centered plumes , 1995 .

[4]  E. Okal,et al.  Rayleigh-wave dispersion along the Hawaiian Swell: a test of lithospheric thinning by thermal rejuvenation at a hotspot , 1996 .

[5]  Greg Hirth,et al.  Water in the oceanic upper mantle: implications for rheology , 1996 .

[6]  F. Pollitz,et al.  Viscosity structure beneath northeast Iceland , 1996 .

[7]  D. L. Anderson The scales of mantle convection , 1998 .

[8]  J. Korenaga Magmatism and dynamics of continental breakup in the presence of a mantle plume , 2000 .

[9]  Lateral heterogeneity of the upper mantle determined from the travel times of multiple ScS , 1975 .

[10]  K. Priestley,et al.  Shear‐wave structure of the lithosphere above the Hawaiian Hot Spot from two‐station Rayleigh wave phase velocity measurements , 1999 .

[11]  J. Francheteau,et al.  Spatial and temporal variations of subsidence of the East Pacific Rise (0–23°S) , 1998 .

[12]  D. L. Anderson,et al.  Layered mantle convection: A model for geoid and topography , 1997 .

[13]  D. Forsyth,et al.  The effects of temperature‐ and pressure‐dependent viscosity on three‐dimensional passive flow of the mantle beneath a ridge‐transform System , 1992 .

[14]  E. Hearn,et al.  Effect of anisotropy on oceanic upper mantle temperatures, structure, and dynamics , 1997 .

[15]  W. Menke,et al.  Compressional and shear velocity structure of the lithosphere in northern Iceland , 1998, Bulletin of the Seismological Society of America.

[16]  D. McKenzie,et al.  Melt Generation by Plumes: A Study of Hawaiian Volcanism , 1991 .

[17]  L. Sykes Intraplate seismicity, reactivation of preexisting zones of weakness, alkaline magmatism, and other tectonism postdating continental fragmentation , 1978 .

[18]  R. W. Griffiths,et al.  Implications of mantle plume structure for the evolution of flood basalts , 1990 .

[19]  G. Davies,et al.  Genesis of flood basalts from eclogite‐bearing mantle plumes , 1997 .

[20]  J. M. Azevedo,et al.  Volcanic gaps and subaerial records ofpalaeo-sea-levels on Flores Island (Azores): tectonic andmorphological implications , 1999 .

[21]  M. Richards,et al.  Flood Basalts and Hot-Spot Tracks: Plume Heads and Tails , 1989, Science.

[22]  D. L. Anderson Lithosphere, asthenosphere, and perisphere , 1995 .

[23]  G. Jarvis,et al.  Effects of mantle heat source distribution on supercontinent stability , 1999 .

[24]  J. Schilling Fluxes and excess temperatures of mantle plumes inferred from their interaction with migrating mid-ocean ridges , 1991, Nature.

[25]  D. L. Anderson,et al.  Plate Tectonics and Hotspots: The Third Dimension , 1992, Science.

[26]  D. L. Anderson,et al.  Preliminary reference earth model , 1981 .

[27]  C. Langmuir,et al.  Global correlations of ocean ridge basalt chemistry with axial depth and crustal thickness , 1987 .

[28]  Don L. Anderson,et al.  The composition of the lower mantle , 1970 .

[29]  P. Shearer,et al.  Global mapping of topography on transition zone velocity discontinuities by stacking SS precursors , 1998 .

[30]  M. Bickle,et al.  The Volume and Composition of Melt Generated by Extension of the Lithosphere , 1988 .

[31]  F. D. Stacey Physics of the earth , 1977 .

[32]  Don L. Anderson,et al.  Phase Changes in the Upper Mantle , 1967, Science.

[33]  C. Keen,et al.  Small‐scale convection and divergent plate boundaries , 1999 .

[34]  R. White,et al.  Magmatism at rift zones: The generation of volcanic continental margins and flood basalts , 1989 .

[35]  D. L. Anderson,et al.  Partial melting in the upper mantle , 1970 .

[36]  D. L. Anderson,et al.  Slabs, hotspots, cratons and mantle convection revealed from residual seismic tomography in the upper mantle , 1997 .

[37]  D. L. Anderson The sublithospheric mantle as the source of continental flood basalts; the case against the continental lithosphere and plume head reservoirs , 1994 .

[38]  D. L. Anderson Theory of Earth , 2014 .

[39]  D. Hayes,et al.  A new relationship between subsidence rate and zero‐age depth , 1994 .

[40]  F. Jing,et al.  Temperature Coefficient of Sound Velocity of Perovskite-Enstatite and Lateral Thermal Heterogeneity in Earth’s Lower Mantle , 2000 .

[41]  Y. Tatsumi,et al.  Thermal and geochemical evolution of the mantle wedge in the northeast Japan arc: 1. Contribution from experimental petrology , 1994 .

[42]  D. L. Anderson,et al.  The fate of slabs inferred from seismic tomography and 130 million years of subduction , 1995 .

[43]  L. Larsen,et al.  Evidence from the rare-earth-element record of mantle melting for cooling of the Tertiary Iceland plume , 1998, Nature.

[44]  D. L. Anderson,et al.  Edge-driven convection , 1998 .

[45]  T. Kikegawa,et al.  The Phase Boundary Between α- and β-Mg2SiO4 Determined by in Situ X-ray Observation , 1994, Science.

[46]  G. Marquart,et al.  Mantle flow and the evolution of the lithosphere , 1993 .

[47]  M. Feighner,et al.  Numerical modeling of chemically buoyant mantle plumes at spreading ridges , 1995 .

[48]  E. Parmentier,et al.  Spreading rate dependence of three-dimensional structure in oceanic spreading centres , 1990, Nature.

[49]  A. Davaille,et al.  Onset of thermal convection in fluids with temperature‐dependent viscosity: Application to the oceanic mantle , 1994 .

[50]  W. McDonough,et al.  Mineralogy and composition of the upper mantle , 1998 .

[51]  Frank M. Rcit Dynamical Models for Sea Floor Spreading , 1973 .

[52]  Shiobara,et al.  Evolution of oceanic crust on the Kolbeinsey Ridge, north of Iceland, over the past 22 Myr , 1998 .

[53]  M. Wysession,et al.  Mantle discontinuities and temperature under the North American continental keel , 1998, Nature.

[54]  Garrett Ito,et al.  Origin of intraplate volcanoes from guyot heights and oceanic paleodepth , 2000 .

[55]  M. Fisk,et al.  Major element chemistry of Galapagos Rift Zone magmas and their phenocrysts , 1982 .

[56]  L. Cathles,et al.  The Viscosity of the Earth's Mantle , 1975 .

[57]  B. Hanan,et al.  Chaotic topography, mantle flow and mantle migration in the Australian–Antarctic discordance , 1998, Nature.

[58]  O. Eldholm,et al.  Tectonism and magmatism during NE Atlantic continental break-up: the Vøring Margin , 1992, Geological Society, London, Special Publications.

[59]  H. Spetzler,et al.  Temperature fluctuation and thermodynamic properties in Earth's lower mantle: An application of the complete travel time equation of state , 1994 .

[60]  R. White The Earth's Crust and Lithosphere , 1988 .

[61]  J. Montagner,et al.  Global‐scale analysis of the mantle Pds phases , 1999 .

[62]  C. Gable,et al.  Thermal evolution of the mantle following continental aggregation in 3D convection models , 1999 .

[63]  W. M. Kaula Minimal upper mantle temperature variations consistent with observed heat flow and plate velocities , 1983 .

[64]  Ș.,et al.  Seismic Velocities in Mantle Minerals and the Mineralogy of the Upper Mantle , 2022 .

[65]  J. Verhoogen Possible Temperatures in the Oceanic Upper Mantle and the Formation of Magma , 1973 .

[66]  K. R. Sreenivasan,et al.  Turbulent convection at very high Rayleigh numbers , 1999, Nature.

[67]  D. L. Anderson Hotspots, polar wander, Mesozoic convection and the geoid , 1982, Nature.

[68]  A. McBirney,et al.  Plume-asthenosphere mixing beneath the Galapagos archipelago , 1988, Nature.

[69]  J. Elder The bowels of the earth , 1976 .

[70]  Jian Lin,et al.  Oceanic spreading center–hotspot interactions: Constraints from along-isochron bathymetric and gravity anomalies , 1995 .

[71]  G. Czamanske,et al.  Demise of the Siberian Plume: Paleogeographic and Paleotectonic Reconstruction from the Prevolcanic and Volcanic Record, North-Central Siberia , 1998 .

[72]  E. Bonatti,et al.  A Cold Suboceanic Mantle Belt at the Earth's Equator , 1993, Science.

[73]  S. Stein,et al.  A model for the global variation in oceanic depth and heat flow with lithospheric age , 1992, Nature.

[74]  Eiichi Takahahshi,et al.  Origin of the Columbia River basalts: melting model of a heterogeneous plume head , 1998 .

[75]  T. Wallace,et al.  Close in ScS and sScS reverberations from the 9 June 1994 Bolivian Earthquake , 1995 .

[76]  F. Richter,et al.  Simple plate models of mantle convection , 1977 .

[77]  T. Sisson,et al.  Evidence for pressure-release melting beneath magmatic arcs from basalt at Galunggung, Indonesia , 1998, Nature.

[78]  L. Gasperini,et al.  Diffuse impact of the Mid-Atlantic Ridge with the Romanche transform: an ultracold ridge-transform intersection , 1996 .

[79]  D. L. Anderson,et al.  Mineral physics constraints on the chemical composition of the Earth's lower mantle , 1994 .

[80]  Enrico Bonath Not So Hot "Hot Spots" in the Oceanic Mantle , 1990, Science.

[81]  C. Agee PHASE TRANSFORMATIONS AND SEISMIC STRUCTURE IN THE UPPER MANTLE AND TRANSITION ZONE , 1998 .

[82]  A. Hofmeister,et al.  Mantle values of thermal conductivity and the geotherm from phonon lifetimes , 1999, Science.

[83]  T. Kikegawa,et al.  The Phase Boundary Between agr- and beta-Mg2SiO4 Determined by in Situ X-ray Observation. , 1994, Science.

[84]  Jian Lin,et al.  Mantle temperature anomalies along the past and paleoaxes of the Galápagos spreading center as inferred from gravity analyses , 1995 .