Improving the hydrodynamic performance of diffuser vanes via shape optimization

[1]  R. Haftka,et al.  Surrogate model‐based strategy for cryogenic cavitation model validation and sensitivity evaluation , 2008 .

[2]  Shengxiang Yang,et al.  Evolutionary Computation in Dynamic and Uncertain Environments , 2007, Studies in Computational Intelligence.

[3]  Wahid Ghaly,et al.  Global- and Local-Shape Aerodynamic Optimization of Turbine Blades , 2006 .

[4]  Raphael T. Haftka,et al.  Radial turbine preliminary aerodynamic design optimization for expander cycle liquid rocket engine , 2006 .

[5]  Raphael T. Haftka,et al.  Surrogate Model-Based Strategy for Cryogenic Cavitation Model Validation and Sensitivity Evaluation , 2006 .

[6]  T. Simpson,et al.  Use of Kriging Models to Approximate Deterministic Computer Models , 2005 .

[7]  R. Haftka,et al.  Multiple Surrogates for the Shape Optimization of Bluff Body-Facilitated Mixing , 2005 .

[8]  Kevin Tucker,et al.  Response surface approximation of pareto optimal front in multi-objective optimization , 2004 .

[9]  Douglas L. Sondak,et al.  General Equation Set Solver for Compressible and Incompressible Turbomachinery Flows , 2003 .

[10]  Thomas Bäck,et al.  Metamodel-Assisted Evolution Strategies , 2002, PPSN.

[11]  Wei Shyy,et al.  Shape optimization of supersonic turbines using global approximation methods , 2002 .

[12]  Kazuhiro Nakahashi,et al.  Aerodynamic Shape Optimization of Supersonic Wings by Adaptive Range Multiobjective Genetic Algorithms , 2001, EMO.

[13]  Daisuke Sasaki,et al.  Multiobjective evolutionary computation for supersonic wing-shape optimization , 2000, IEEE Trans. Evol. Comput..

[14]  J. Hart Nonparametric Smoothing and Lack-Of-Fit Tests , 1997 .

[15]  R. Haftka,et al.  Response Surface Techniques for Diffuser Shape Optimization , 1997 .

[16]  James W. Neill,et al.  Testing Linear Regression Function Adequacy without Replication , 1985 .

[17]  G. Matheron Principles of geostatistics , 1963 .

[18]  H. N. Michael Centrifugal and axial flow pumps: by A. J. Stepanoff. 428 pages, illustrations, diagrams, 15 × 24 cm. New York, John Wiley & Sons, Inc., 1948. Price, $7.50 , 1948 .

[19]  Raphael T. Haftka,et al.  Surrogate Model-Based Optimization Framework: A Case Study in Aerospace Design , 2007, Evolutionary Computation in Dynamic and Uncertain Environments.

[20]  Kwang-Yong Kim,et al.  Shape optimization of turbomachinery blade using multiple surrogate models , 2006 .

[21]  Raphael T. Haftka,et al.  Surrogate-based Analysis and Optimization , 2005 .

[22]  Kimmo Berg,et al.  European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS) , 2004 .

[23]  Søren Nymand Lophaven,et al.  DACE - A Matlab Kriging Toolbox, Version 2.0 , 2002 .

[24]  Sharon L. Padula,et al.  Probabilistic approach to free-form airfoil shape optimization under uncertainty , 2002 .

[25]  Kyriakos C. Giannakoglou,et al.  Design of optimal aerodynamic shapes using stochastic optimization methods and computational intelligence , 2002 .

[26]  Wei Shyy,et al.  Neural Network and Response Surface Methodology for Rocket Engine Component Optimization , 2000 .

[27]  L. Watson,et al.  Reasonable Design Space Approach to Response Surface Approximation , 1999 .

[28]  J. Mark Introduction to radial basis function networks , 1996 .

[29]  Saltelli Andrea,et al.  Sensitivity Analysis for Nonlinear Mathematical Models. Numerical ExperienceSensitivity Analysis for Nonlinear Mathematical Models. Numerical Experience , 1995 .

[30]  H. Lomax,et al.  Thin-layer approximation and algebraic model for separated turbulent flows , 1978 .