Diminished Th17 (not Th1) responses underlie multiple sclerosis disease abrogation after hematopoietic stem cell transplantation

To define changes in phenotype and functional responses of reconstituting T cells in patients with aggressive multiple sclerosis (MS) treated with ablative chemotherapy and autologous hematopoietic stem cell transplantation (HSCT).

[1]  F. Miedema,et al.  T cell receptor excision circles as markers for recent thymic emigrants: basic aspects, technical approach, and guidelines for interpretation , 2001, Journal of Molecular Medicine.

[2]  C. Baecher-Allan,et al.  Identification of T helper type 1–like, Foxp3+ regulatory T cells in human autoimmune disease , 2011, Nature Medicine.

[3]  R. Mechelli,et al.  CD161(high)CD8+T cells bear pathogenetic potential in multiple sclerosis. , 2011, Brain : a journal of neurology.

[4]  Jeffrey A. Cohen,et al.  Reciprocal Th1 and Th17 regulation by mesenchymal stem cells: Implication for multiple sclerosis , 2010, Annals of neurology.

[5]  N. Tubridy,et al.  T cells in multiple sclerosis and experimental autoimmune encephalomyelitis , 2010, Clinical and experimental immunology.

[6]  M. Lynch,et al.  Infiltration of Th1 and Th17 cells and activation of microglia in the CNS during the course of experimental autoimmune encephalomyelitis , 2010, Brain, Behavior, and Immunity.

[7]  P. Calabresi,et al.  Abnormal B‐cell cytokine responses a trigger of T‐cell–mediated disease in MS? , 2010, Annals of neurology.

[8]  R. Martin,et al.  T-cell clones persisting in the circulation after autologous hematopoietic SCT are undetectable in the peripheral CD34+ selected graft , 2010, Bone Marrow Transplantation.

[9]  R. Bronson,et al.  Encephalitogenic T cells that stably express both T-bet and RORγt consistently produce IFNγ but have a spectrum of IL-17 profiles , 2009, Journal of Neuroimmunology.

[10]  P. Duquette,et al.  Preferential recruitment of interferon‐γ–expressing TH17 cells in multiple sclerosis , 2009, Annals of neurology.

[11]  T. Banović,et al.  Conventional dendritic cells are the critical donor APC presenting alloantigen after experimental bone marrow transplantation. , 2009, Blood.

[12]  B. Engelhardt,et al.  C-C chemokine receptor 6–regulated entry of TH-17 cells into the CNS through the choroid plexus is required for the initiation of EAE , 2009, Nature Immunology.

[13]  A. Uccelli,et al.  Multipotent mesenchymal stromal cells for autoimmune diseases: teaching new dogs old tricks , 2009, Bone Marrow Transplantation.

[14]  A. Testori,et al.  Autologous non-myeloablative haemopoietic stem cell transplantation in relapsing-remitting multiple sclerosis: a phase I/II study , 2009, The Lancet Neurology.

[15]  A. Thiel,et al.  Life after the thymus: CD31+ and CD31- human naive CD4+ T-cell subsets. , 2009, Blood.

[16]  H. Atkins,et al.  Immune ablation followed by autologous hematopoietic stem cell transplantation for the treatment of poor prognosis multiple sclerosis. , 2009, Methods in molecular biology.

[17]  Chen Dong,et al.  CCR6 Regulates the Migration of Inflammatory and Regulatory T Cells1 , 2008, The Journal of Immunology.

[18]  D. Karussis,et al.  The potential use of stem cells in multiple sclerosis: An overview of the preclinical experience , 2008, Clinical Neurology and Neurosurgery.

[19]  K. Bendtzen,et al.  T helper cell type 1 (Th1), Th2 and Th17 responses to myelin basic protein and disease activity in multiple sclerosis , 2008, Immunology.

[20]  D. Männel,et al.  Tracing Functional Antigen-Specific CCR6+ Th17 Cells after Vaccination , 2008, PloS one.

[21]  B. Segal,et al.  IL-12– and IL-23–modulated T cells induce distinct types of EAE based on histology, CNS chemokine profile, and response to cytokine inhibition , 2008, The Journal of experimental medicine.

[22]  Nathalie Arbour,et al.  Human TH17 lymphocytes promote blood-brain barrier disruption and central nervous system inflammation , 2007, Nature Medicine.

[23]  D. Arnold,et al.  Induction of antigen-specific tolerance in multiple sclerosis after immunization with DNA encoding myelin basic protein in a randomized, placebo-controlled phase 1/2 trial. , 2007, Archives of neurology.

[24]  R. Cheynier,et al.  Estimating thymic function through quantification of T-cell receptor excision circles. , 2007, Methods in molecular biology.

[25]  C. Lamers,et al.  T-lymphocyte reconstitution following rigorously T-cell-depleted versus unmodified autologous stem cell transplants , 2006, Bone Marrow Transplantation.

[26]  J. Maciejewski,et al.  Dendritic cells in autologous hematopoietic stem cell transplantation for diffuse large B-cell lymphoma: graft content and post transplant recovery predict survival , 2005, Bone Marrow Transplantation.

[27]  R. Gold,et al.  Therapeutic efficacy of IL-17 neutralization in murine experimental autoimmune encephalomyelitis. , 2005, Cellular immunology.

[28]  D. Douek,et al.  Thymic output generates a new and diverse TCR repertoire after autologous stem cell transplantation in multiple sclerosis patients , 2005, The Journal of experimental medicine.

[29]  M. Duddy,et al.  Type 2 Monocyte and Microglia Differentiation Mediated by Glatiramer Acetate Therapy in Patients with Multiple Sclerosis1 , 2004, The Journal of Immunology.

[30]  H. Heslop,et al.  Characteristics of T-cell receptor repertoire and myelin-reactive T cells reconstituted from autologous haematopoietic stem-cell grafts in multiple sclerosis. , 2004, Brain : a journal of neurology.

[31]  L. Kanz,et al.  Myeloablative immunosuppressive treatment with autologous haematopoietic stem cell transplantation in a patient with psoriatic arthropathy and monoclonal gammopathy of undetermined significance , 2004, Annals of the rheumatic diseases.

[32]  P. Emery,et al.  Autologous stem cell transplantation for systemic lupus erythematosus , 2004, Lupus.

[33]  P. Brooks,et al.  Autologous hemopoietic stem cell transplantation in severe rheumatoid arthritis: a report from the EBMT and ABMTR. , 2004, The Journal of rheumatology.

[34]  V. Kozlov,et al.  High-dose immunosuppression with autologous stem cell transplantation in severe refractory systemic lupus erythematosus , 2004, Lupus.

[35]  H. Atkins,et al.  Suppressing immunity in advancing MS , 2004, Neurology.

[36]  C. Perreault,et al.  Evidence for adequate thymic function but impaired naive T-cell survival following allogeneic hematopoietic stem cell transplantation in the absence of chronic graft-versus-host disease. , 2003, Blood.

[37]  G. Kraft,et al.  High-dose immunosuppressive therapy and autologous peripheral blood stem cell transplantation for severe multiple sclerosis. , 2003, Blood.

[38]  R. Martin,et al.  Immunological questions on hematopoietic stem cell transplantation for multiple sclerosis , 2003, Bone Marrow Transplantation.

[39]  R. Cheynier,et al.  Quantification of T cell receptor rearrangement excision circles to estimate thymic function: an important new tool for endocrine-immune physiology. , 2003, The Journal of endocrinology.

[40]  P. Moss,et al.  Reconstitution of T-cell repertoire after autologous stem cell transplantation: influence of CD34 selection and cytomegalovirus infection. , 2003, Biology of blood and marrow transplantation : journal of the American Society for Blood and Marrow Transplantation.

[41]  L. Bruckers,et al.  Longitudinal study of antimyelin T-cell reactivity in relapsing–remitting multiple sclerosis: association with clinical and MRI activity , 2002, Journal of Neuroimmunology.

[42]  V. Kuchroo,et al.  T cell response in experimental autoimmune encephalomyelitis (EAE): role of self and cross-reactive antigens in shaping, tuning, and regulating the autopathogenic T cell repertoire. , 2002, Annual review of immunology.

[43]  L. Kappos,et al.  Hematopoietic stem cell transplantation for multiple sclerosis. A retrospective multicenter study. , 2002, Journal of neurology.

[44]  M. Filippi,et al.  Autologous hematopoietic stem cell transplantation suppresses Gd-enhanced MRI activity in MS , 2001, Neurology.

[45]  M. Roncarolo,et al.  Human Cd25+Cd4+ T Regulatory Cells Suppress Naive and Memory T Cell Proliferation and Can Be Expanded in Vitro without Loss of Function , 2001, The Journal of experimental medicine.

[46]  Jingwu Z. Zhang,et al.  Reactivity pattern and cytokine profile of T cells primed by myelin peptides in multiple sclerosis and healthy individuals , 2001, European journal of immunology.

[47]  M. D'hooghe,et al.  T‐cell reactivity to multiple myelin antigens in multiple sclerosis patients and healthy controls , 2001, Journal of neuroscience research.

[48]  L. Weiner,et al.  Peripheral blood stem cell transplantation in multiple sclerosis with busulfan and cyclophosphamide conditioning: report of toxicity and immunological monitoring. , 2000, Biology of blood and marrow transplantation : journal of the American Society for Blood and Marrow Transplantation.

[49]  J. Frank,et al.  Encephalitogenic potential of the myelin basic protein peptide (amino acids 83–99) in multiple sclerosis: Results of a phase II clinical trial with an altered peptide ligand , 2000, Nature Medicine.

[50]  Rob J. de Boer,et al.  Increased cell division but not thymic dysfunction rapidly affects the T-cell receptor excision circle content of the naive T cell population in HIV-1 infection , 2000, Nature Medicine.

[51]  B. Cohen,et al.  Treatment of autoimmune disease by intense immunosuppressive conditioning and autologous hematopoietic stem cell transplantation. , 1998, Blood.

[52]  R. Hohlfeld Immunology of MS , 1998, Journal of Neuroimmunology.

[53]  A. Guerriero,et al.  Lymphoid reconstitution after autologous PBSC transplantation with FACS-Sorted CD34+ hematopoietic progenitors , 1998 .

[54]  A. Guerriero,et al.  Lymphoid reconstitution after autologous PBSC transplantation with FACS-sorted CD34+ hematopoietic progenitors. , 1998, Blood.

[55]  A. Ben-nun,et al.  Immunomodulation of autoimmunity in MRL/lpr mice with syngeneic bone marrow transplantation (SBMT) , 1995, Clinical and experimental immunology.

[56]  A. Ben-nun,et al.  Prevention of experimental autoimmune encephalomyelitis and induction of tolerance with acute immunosuppression followed by syngeneic bone marrow transplantation. , 1992, Journal of immunology.