Catalysts Encapsulated in Molecular Machines.

Smart catalysts offer the control of chemical processes and sequences of transformations, and catalysts with unique catalytic behavior can afford chiral products or promote successive polymerization. To meet advanced demands, the key to constructing smart catalysts is to incorporate traditional catalytic functional groups with trigger-induced factors. Molecular machines with dynamic properties and particular topological structures have typical stimulus-responsive features. In recent years, scientists have made efforts to utilize molecular machines (molecular switches, rotaxanes, motors, etc.) as scaffolds to develop smart catalysts. This Minireview focuses on the achievements of developing catalysts encapsulated in molecular machines and their remarkable specialties. This strategy is believed to provide more potential applications in switchable reactions, asymmetric synthesis, and processive catalysis.

[1]  Manfred Schliwa,et al.  Molecular motors , 2003, Nature.

[2]  M. T. Reetz Gerichtete Evolution stereoselektiver Enzyme: Eine ergiebige Katalysator-Quelle f r asymmetrische Reaktionen , 2011 .

[3]  D. Leigh,et al.  Artificial switchable catalysts. , 2015, Chemical Society reviews.

[4]  Robert M. Williams,et al.  Enantiomeric natural products: occurrence and biogenesis. , 2012, Angewandte Chemie.

[5]  Elizabeth A. Raymond,et al.  Design of allosterically regulated protein catalysts. , 2015, Biochemistry.

[6]  M. Garcia‐Garibay,et al.  Crystalline molecular machines: a quest toward solid-state dynamics and function. , 2006, Accounts of chemical research.

[7]  Kevin D. Haenni,et al.  A rotaxane-based switchable organocatalyst. , 2012, Angewandte Chemie.

[8]  Yurii S. Moroz,et al.  A single mutation in a regulatory protein produces evolvable allosterically regulated catalyst of nonnatural reaction. , 2013, Angewandte Chemie.

[9]  S. Hecht,et al.  Photoswitchable catalysts: correlating structure and conformational dynamics with reactivity by a combined experimental and computational approach. , 2009, Journal of the American Chemical Society.

[10]  J. F. Stoddart,et al.  A [2]Catenane-Based Solid State Electronically Reconfigurable Switch , 2000 .

[11]  Michael Y. Galperin,et al.  Inventing the dynamo machine: the evolution of the F-type and V-type ATPases , 2007, Nature Reviews Microbiology.

[12]  R. Nolte,et al.  Designing processive catalytic systems. Threading polymers through a flexible macrocycle ring. , 2014, Journal of the American Chemical Society.

[13]  Manfred T Reetz,et al.  Laboratory evolution of stereoselective enzymes: a prolific source of catalysts for asymmetric reactions. , 2011, Angewandte Chemie.

[14]  T. Lithgow,et al.  Evolution of the Molecular Machines for Protein Import into Mitochondria , 2006, Science.

[15]  Wesley R Browne,et al.  Making molecular machines work , 2006, Nature nanotechnology.

[16]  H. Berg,et al.  Bacteria Swim by Rotating their Flagellar Filaments , 1973, Nature.

[17]  Alan E. Rowan,et al.  Epoxidation of polybutadiene by a topologically linked catalyst , 2003, Nature.

[18]  J. Alemán,et al.  Applications of asymmetric organocatalysis in medicinal chemistry. , 2013, Chemical Society reviews.

[19]  S. Hecht,et al.  Photoschalten von Basizität , 2008 .

[20]  B. Feringa,et al.  Dual stereocontrol over the Henry reaction using a light- and heat-triggered organocatalyst. , 2014, Chemical communications.

[21]  Ben L Feringa,et al.  Dynamic Control of Chiral Space in a Catalytic Asymmetric Reaction Using a Molecular Motor , 2011, Science.

[22]  Michael Schmittel,et al.  From self-sorted coordination libraries to networking nanoswitches for catalysis. , 2015, Chemical communications.

[23]  D. Leigh,et al.  A switchable [2]rotaxane asymmetric organocatalyst that utilizes an acyclic chiral secondary amine. , 2014, Journal of the American Chemical Society.

[24]  T. Takata,et al.  Successive catalytic reactions specific to Pd-based rotaxane complexes as a result of wheel translation along the axle. , 2010, Chemical communications.

[25]  J. Canary,et al.  A redox-reconfigurable, ambidextrous asymmetric catalyst. , 2012, Journal of the American Chemical Society.

[26]  Stephen J Benkovic,et al.  A clamp-like biohybrid catalyst for DNA oxidation. , 2013, Nature chemistry.

[27]  R. Nolte,et al.  Porphyrin macrocyclic catalysts for the processive oxidation of polymer substrates. , 2010, Journal of the American Chemical Society.

[28]  Q. Luo,et al.  Reversible Ca(2+) switch of an engineered allosteric antioxidant selenoenzyme. , 2014, Angewandte Chemie.

[29]  D. Leigh,et al.  Exploring the activation modes of a rotaxane-based switchable organocatalyst. , 2014, Journal of the American Chemical Society.

[30]  Y. Takashima,et al.  Artificial molecular clamp: a novel device for synthetic polymerases. , 2011, Angewandte Chemie.

[31]  David A Leigh,et al.  Active metal template synthesis of rotaxanes, catenanes and molecular shuttles. , 2009, Chemical Society reviews.

[32]  Depeng Zhao,et al.  Dynamic control of chirality in phosphine ligands for enantioselective catalysis , 2015, Nature Communications.

[33]  Quan Luo,et al.  Reversible pH-controlled switching of an artificial antioxidant selenoenzyme based on pseudorotaxane formation and dissociation. , 2015, Chemical communications.

[34]  J. Beswick,et al.  Selecting reactions and reactants using a switchable rotaxane organocatalyst with two different active sites† †Electronic supplementary information (ESI) available: Synthetic procedures and characterisation data. See DOI: 10.1039/c4sc03279a Click here for additional data file. , 2014, Chemical science.

[35]  J. W. Ward,et al.  Sequence-Specific Peptide Synthesis by an Artificial Small-Molecule Machine , 2013, Science.

[36]  James R. Kiefer,et al.  Visualizing DNA replication in a catalytically active Bacillus DNA polymerase crystal , 1998, Nature.

[37]  J. F. Stoddart,et al.  The chemistry of the mechanical bond. , 2009, Chemical Society reviews.

[38]  T. Steitz A structural understanding of the dynamic ribosome machine , 2008, Nature Reviews Molecular Cell Biology.

[39]  Robert M. Williams,et al.  Enantiomere Naturstoffe: Vorkommen und Biogenese , 2012 .

[40]  S. Hecht,et al.  Photoswitching of basicity. , 2008, Angewandte Chemie.

[41]  D. Hebert,et al.  Protein Translocons Multifunctional Mediators of Protein Translocation across Membranes , 2003, Cell.

[42]  M. Schliwa,et al.  Walking on two heads: the many talents of kinesin , 2000, Nature Reviews Molecular Cell Biology.

[43]  R. Nolte,et al.  Processive enzyme mimic: Kinetics and thermodynamics of the threading and sliding process , 2006, Proceedings of the National Academy of Sciences.

[44]  Stoddart,et al.  Electronically configurable molecular-based logic gates , 1999, Science.