β3-Adrenergically induced glucose uptake in brown adipose tissue is independent of UCP1 presence or activity: Mediation through the mTOR pathway

[1]  T. Yen Antiobesity and antidiabetic beta-agonists: lessons learned and questions to be answered. , 1994, Obesity research.

[2]  C. Chresta,et al.  Ku-0063794 is a specific inhibitor of the mammalian target of rapamycin (mTOR) , 2009, The Biochemical journal.

[3]  A. Barlier,et al.  18F-FDG Avidity of Pheochromocytomas and Paragangliomas: A New Molecular Imaging Signature? , 2009, Journal of Nuclear Medicine.

[4]  S. Lindahl,et al.  Halothane Selectively Inhibits Nonshivering Thermogenesis: Possible Implications for Thermoregulation during Anesthesia of Infants , 1995, Anesthesiology.

[5]  B. Cannon,et al.  Thermogenic Responses in Brown Fat Cells Are Fully UCP1-dependent , 2000, The Journal of Biological Chemistry.

[6]  K. Flaherty,et al.  Sarcolipin is a newly identified regulator of muscle-based thermogenesis in mammals , 2012, Nature Medicine.

[7]  J. Granneman,et al.  White adipose tissue contributes to UCP1-independent thermogenesis. , 2003, American journal of physiology. Endocrinology and metabolism.

[8]  F. Lönnqvist,et al.  Tissue distribution of beta 3-adrenergic receptor mRNA in man. , 1993, The Journal of clinical investigation.

[9]  J. Himms-Hagen,et al.  Thermogenesis in brown adipose tissue as an energy buffer. Implications for obesity. , 1984, The New England journal of medicine.

[10]  G. Cooney,et al.  The effect of insulin and noradrenaline on the uptake of 2‐[1‐14C]deoxyglucose in vivo by brown adipose tissue and other glucose‐utilising tissues of the mouse , 1985, FEBS letters.

[11]  S. Lindahl,et al.  Thermogenesis in Brown Adipocytes Is Inhibited by Volatile Anesthetic Agents A Factor Contributing to Hypothermia in Infants? , 1994, Anesthesiology.

[12]  H. Lang,et al.  Hyperfixation diffuse de la graisse brune à la tomoscintigraphie par émission de positons couplée à la tomodensitométrie (TEP-TDM) dans l’exploration d’un phéochromocytome extra surrénalien , 2005 .

[13]  M. Miyagawa,et al.  High Incidence of Metabolically Active Brown Adipose Tissue in Healthy Adult Humans , 2009, Diabetes.

[14]  J. Chambard,et al.  JCB_201403080 1..10 , 2014 .

[15]  R. Lecomte,et al.  In vivo measurement of energy substrate contribution to cold‐induced brown adipose tissue thermogenesis , 2015, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[16]  S. Lindahl,et al.  Inhibitory effects of halothane on the thermogenic pathway in brown adipocytes: localization to adenylyl cyclase and mitochondrial fatty acid oxidation. , 2004, Biochemical pharmacology.

[17]  P. Brust,et al.  Dissociation Between Brown Adipose Tissue 18F-FDG Uptake and Thermogenesis in Uncoupling Protein 1–Deficient Mice , 2017, The Journal of Nuclear Medicine.

[18]  G. Bronnikov,et al.  Norepinephrine Induces Vascular Endothelial Growth Factor Gene Expression in Brown Adipocytes through a β-Adrenoreceptor/cAMP/Protein Kinase A Pathway Involving Src but Independently of Erk1/2* , 2000, The Journal of Biological Chemistry.

[19]  B. Cannon,et al.  Only UCP1 can mediate adaptive nonshivering thermogenesis in the cold , 2001, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[20]  M. Saito,et al.  Uncoupling protein 1 is necessary for norepinephrine-induced glucose utilization in brown adipose tissue. , 2005, Diabetes.

[21]  Jan Nedergaard,et al.  The presence of UCP1 demonstrates that metabolically active adipose tissue in the neck of adult humans truly represents brown adipose tissue , 2009, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[22]  Jan Nedergaard,et al.  Brown adipose tissue: function and physiological significance. , 2004, Physiological reviews.

[23]  S. Keipert,et al.  Brite/beige fat and UCP1 - is it thermogenesis? , 2014, Biochimica et biophysica acta.

[24]  A. Doria,et al.  Activation of human brown adipose tissue by a β3-adrenergic receptor agonist. , 2015, Cell metabolism.

[25]  T. Bengtsson,et al.  New powers of brown fat: fighting the metabolic syndrome. , 2011, Cell metabolism.

[26]  T. Bengtsson,et al.  β-Adrenoceptors, but not α-adrenoceptors, stimulate AMP-activated protein kinase in brown adipocytes independently of uncoupling protein-1 , 2005, Diabetologia.

[27]  A. Marette,et al.  Noradrenaline stimulates glucose transport in rat brown adipocytes by activating thermogenesis. Evidence that fatty acid activation of mitochondrial respiration enhances glucose transport. , 1991, The Biochemical journal.

[28]  Hitoshi Yamashita,et al.  Mice lacking mitochondrial uncoupling protein are cold-sensitive but not obese , 1997, nature.

[29]  F. Assimacopoulos-Jeannet,et al.  Stimulatory effect of cold adaptation on glucose utilization by brown adipose tissue. Relationship with changes in the glucose transporter system. , 1987, The Journal of biological chemistry.

[30]  Manjot Kaur,et al.  Continuous glucose monitoring in normal mice and mice with prediabetes and diabetes. , 2006, Diabetes technology & therapeutics.

[31]  J. Nedergaard,et al.  Cold‐induced expression of the VEGF gene in brown adipose tissue is independent of thermogenic oxygen consumption , 2005, FEBS letters.

[32]  B. Cannon,et al.  Beta 3- and alpha1-adrenergic Erk1/2 activation is Src- but not Gi-mediated in Brown adipocytes. , 2000, The Journal of biological chemistry.

[33]  N. Sakane,et al.  Anti-obesity effect of CL 316,243, a highly specific beta 3-adrenoceptor agonist, in mice with monosodium-L-glutamate-induced obesity. , 1994, European journal of endocrinology.

[34]  L. Bukowiecki,et al.  Stimulatory effects of cold exposure and cold acclimation on glucose uptake in rat peripheral tissues. , 1990, The American journal of physiology.

[35]  P. Arner,et al.  Cidea improves the metabolic profile through expansion of adipose tissue , 2015, Nature Communications.

[36]  O. Morel,et al.  Visualization of Activated BAT in Mice, with FDG-PET and Its Relation to UCP1 , 2013 .

[37]  J. Orava,et al.  Functional brown adipose tissue in healthy adults. , 2009, The New England journal of medicine.

[38]  Naishi Li,et al.  Activating Brown Adipose Tissue for Weight Loss and Lowering of Blood Glucose Levels: A MicroPET Study Using Obese and Diabetic Model Mice , 2014, PloS one.

[39]  T. Bengtsson,et al.  Beta-adrenoceptors, but not alpha-adrenoceptors, stimulate AMP-activated protein kinase in brown adipocytes independently of uncoupling protein-1. , 2005, Diabetologia.

[40]  M. Cawthorne Does brown adipose tissue have a role to play in glucose homeostasis? , 1989, Proceedings of the Nutrition Society.

[41]  L. Bukowiecki,et al.  Chronic norepinephrine infusion stimulates glucose uptake in white and brown adipose tissues. , 1994, The American journal of physiology.

[42]  S. Lindahl,et al.  Thermogenesis Inhibition in Brown Adipocytes Is a Specific Property of Volatile Anesthetics , 2003, Anesthesiology.

[43]  T. Bengtsson,et al.  Unexpected evidence for active brown adipose tissue in adult humans. , 2007, American journal of physiology. Endocrinology and metabolism.

[44]  M. Hall,et al.  mTORC2 sustains thermogenesis via Akt‐induced glucose uptake and glycolysis in brown adipose tissue , 2016, EMBO molecular medicine.

[45]  B. Cannon,et al.  β3- and α1-Adrenergic Erk1/2 Activation Is Src- but Not Gi-mediated in Brown Adipocytes* , 2000, The Journal of Biological Chemistry.

[46]  Clark R. Andersen,et al.  Brown Adipose Tissue Improves Whole-Body Glucose Homeostasis and Insulin Sensitivity in Humans , 2014, Diabetes.

[47]  E. Palmer,et al.  Identification and importance of brown adipose tissue in adult humans. , 2009, The New England journal of medicine.

[48]  B. Cannon,et al.  UCP1 is essential for adaptive adrenergic nonshivering thermogenesis. , 2006, American journal of physiology. Endocrinology and metabolism.

[49]  J. Ukropec,et al.  UCP1-independent Thermogenesis in White Adipose Tissue of Cold-acclimated Ucp1-/- Mice* , 2006, Journal of Biological Chemistry.

[50]  B. Kingwell,et al.  Ephedrine activates brown adipose tissue in lean but not obese humans , 2013, Diabetologia.

[51]  W. D. van Marken Lichtenbelt,et al.  Cold-activated brown adipose tissue in healthy men. , 2009, The New England journal of medicine.

[52]  Zhen-ping Zhu,et al.  Supplemental Data Hypoxia-Independent Angiogenesis in Adipose Tissues during Cold Acclimation , 2008 .

[53]  Carolina E. Hagberg,et al.  Adrenergically stimulated blood flow in brown adipose tissue is not dependent on thermogenesis. , 2015, American journal of physiology. Endocrinology and metabolism.

[54]  E. Horton,et al.  CL-316,243, a β3-Specific Adrenoceptor Agonist, Enhances Insulin-Stimulated Glucose Disposal in Nonobese Rats , 1997, Diabetes.

[55]  R. Wahl,et al.  Radionuclide imaging metabolic activity of brown adipose tissue in a patient with pheochromocytoma. , 2004, Experimental and clinical endocrinology & diabetes : official journal, German Society of Endocrinology [and] German Diabetes Association.

[56]  J. Himms-Hagen,et al.  Effect of CL-316,243, a thermogenic beta 3-agonist, on energy balance and brown and white adipose tissues in rats. , 1994, The American journal of physiology.

[57]  H. Lang,et al.  [Diffuse uptake of brown fat on computed-tomography coupled positron emission tomoscintigraphy (PET-CT) for the exploration of extra-adrenal pheochromocytoma]. , 2006, Annales d'endocrinologie.

[58]  M. Shafiee Ardestani,et al.  Anti Diabetic effect of CL 316,243 (A β3-Adrenergic Agonist) by Down Regulation of Tumour Necrosis Factor (TNF-α) Expression , 2012, PloS one.