Neural computation as adaptive association process in cortical sensorial maps

In this work, the different computational paradigms used in Artificial Intelligence (AI) and Autonomous Robotics are revised in the context of the reactive and situated paradigm. In particular, a Neural Computational paradigm based on perceptual association maps is revised. We explore the Singer hypothesis about the evidence of the same neural mechanism known from retinotopic projections. Finally, the implications of this computational paradigm with maps in the context of the definition, design, building and evaluation of neuroprosthesis are discussed.

[1]  I. Kaufman The Cerebral Cortex of Man: A Clinical Study of Localization of Function , 1951 .

[2]  F. Varela Principles of biological autonomy , 1979 .

[3]  W. H. Dobelle Artificial vision for the blind by connecting a television camera to the visual cortex. , 2000, ASAIO journal.

[4]  J. Gibson The Ecological Approach to Visual Perception , 1979 .

[5]  Jon H Kaas,et al.  Topographic Maps are Fundamental to Sensory Processing , 1997, Brain Research Bulletin.

[6]  W. H. F. Barnes The Nature of Explanation , 1944, Nature.

[7]  T. Powell,et al.  An anatomical study of converging sensory pathways within the cerebral cortex of the monkey. , 1970, Brain : a journal of neurology.

[8]  Nobuo Suga,et al.  Cortical computational maps for auditory imaging , 1990, Neural Networks.

[9]  Kurt Löwenstein,et al.  Symptomatologie und elektrische Reizung bei einer Schußverletzung des Hinterhauptlappens , 1918, Deutsche Zeitschrift für Nervenheilkunde.

[10]  K. Brodmann Vergleichende Lokalisationslehre der Großhirnrinde : in ihren Prinzipien dargestellt auf Grund des Zellenbaues , 1985 .

[11]  W. Penfield The Cerebral Cortex of Man , 1950 .

[12]  M. Cynader,et al.  Sensitivity of cat primary auditory cortex (Al) neurons to the direction and rate of frequency modulation , 1985, Brain Research.

[13]  David Bradley,et al.  A model for intracortical visual prosthesis research. , 2003, Artificial organs.

[14]  Ronald C. Arkin,et al.  An Behavior-based Robotics , 1998 .

[15]  Naoshige Uchida,et al.  Odor maps in the mammalian olfactory bulb: domain organization and odorant structural features , 2000, Nature Neuroscience.

[16]  David J. Warren,et al.  Electrophysiological Mapping of Cat Primary Auditory Cortex with Multielectrode Arrays , 2006, Annals of Biomedical Engineering.

[17]  Christoph E Schreiner,et al.  Order and disorder in auditory cortical maps , 1995, Current Opinion in Neurobiology.

[18]  K. J. Craik,et al.  The nature of explanation , 1944 .

[19]  M. Martinez,et al.  Mapping of the human visual cortex using image-guided transcranial magnetic stimulation. , 2002, Brain research. Brain research protocols.

[20]  C. Kufta,et al.  Feasibility of a visual prosthesis for the blind based on intracortical microstimulation of the visual cortex , 1996 .

[21]  Riitta Salmelin,et al.  Evidence of sharp frequency tuning in the human auditory cortex , 1994, Hearing Research.

[22]  Rodney A. Brooks,et al.  Intelligence Without Reason , 1991, IJCAI.

[23]  J. Rauschecker,et al.  Processing of complex sounds in the macaque nonprimary auditory cortex. , 1995, Science.

[24]  M. Mladejovsky,et al.  ‘Braille’ reading by a blind volunteer by visual cortex stimulation , 1976, Nature.

[25]  M. Sur,et al.  Representations of the body surface in postcentral parietal cortex of Macaca fascicularis , 1980, The Journal of comparative neurology.

[26]  W. McCulloch,et al.  Embodiments of Mind , 1966 .

[27]  E. Reed The Ecological Approach to Visual Perception , 1989 .

[28]  Wolf Singer,et al.  The Observer in the Brain , 1999 .

[29]  David J. Warren,et al.  Spatiotemporal Encoding of a Bar's Direction of Motion by Neural Ensembles in Cat Primary Visual Cortex , 2004, Annals of Biomedical Engineering.

[30]  W. Pitts,et al.  What the Frog's Eye Tells the Frog's Brain , 1959, Proceedings of the IRE.

[31]  D. T. Pham Introduction to AI Robotics, by R. R. Murphy, Bradford Book, MIT Press, Cambridge, MA, 2001, ISBN 0-262-13383-0 , 2002, Robotica.

[32]  D. J. Warren,et al.  High-resolution two-dimensional spatial mapping of cat striate cortex using a 100-microelectrode array , 2001, Neuroscience.

[33]  D. J. Warren,et al.  A neural interface for a cortical vision prosthesis , 1999, Vision Research.

[34]  W. Nagel Handbuch der Physiologie des Menschen. , 1905 .