Numerical model for the behavior and capacity of circular CFT columns, Part I. Theory

Abstract This paper presents a simple and effective model for the behavior and capacity of circular concrete-filled tube (CFT) short columns under extreme loading conditions. Firstly, efficient methods are presented to predict the complete stress–strain curve of concrete and steel, which are subjected to triaxial and biaxial stresses, respectively. Empirical expressions are proposed for the confinement effect, which increases both the ductility and strength of concrete but decreases the yield stress of steel. Subsequently, the fiber model is adopted to describe the complete behavior of the CFT columns under axial force and bending moment. The accuracy and the applicability of the proposed method are examined in a companion paper.

[1]  S. F. Chen,et al.  DESIGN OF BIAXIALLY LOADED SHORT COMPOSITE COLUMNS OF ARBITRARY SECTION , 2001 .

[2]  Richard W. Furlong,et al.  Strength of Steel-Encased Concrete Beam Columns , 1967 .

[3]  Hanbin Ge,et al.  Uniaxial stress–strain relationship of concrete confined by various shaped steel tubes , 2001 .

[4]  Sherif El-Tawil,et al.  Nonlinear Analysis of Steel-Concrete Composite Structures: State of the Art , 2004 .

[5]  F. E. Richart,et al.  A study of the failure of concrete under combined compressive stresses , 1928 .

[6]  George D. Hatzigeorgiou,et al.  Minimum cost design of fibre-reinforced concrete-filled steel tubular columns , 2005 .

[7]  I Imran,et al.  EXPERIMENTAL STUDY OF PLAIN CONCRETE UNDER TRIAXIAL STRESS. CLOSURE , 1996 .

[8]  Raphael H. Grzebieta,et al.  Concrete-filled circular steel tubes subjected to pure bending , 2001 .

[9]  Shinichi Hino,et al.  Modeling of Stress - Strain Relationships for Steel and Concrete in Concrete Filled Circular Steel Tubular Columns , 1996 .

[10]  D. J. Laurie Kennedy,et al.  THE FLEXURAL BEHAVIOUR OF CONCRETE-FILLED HOLLOW STRUCTURAL SECTIONS , 1994 .

[11]  Lin-Hai Han,et al.  Flexural behaviour of concrete-filled steel tubes , 2004 .

[12]  Jerome F. Hajjar,et al.  A distributed plasticity model for cyclic analysis of concrete-filled steel tube beam-columns and composite frames , 1998 .

[13]  R. M. Zimmerman,et al.  Compressive Strength of Plain Concrete Under Multiaxial Loading Conditions , 1970 .

[14]  Cheng-Tzu Thomas Hsu,et al.  Behavior of Biaxially Loaded Concrete-Encased Composite Columns , 1997 .

[15]  N. E. Shanmugam,et al.  State of the art report on steel–concrete composite columns , 2001 .

[16]  Jerome F. Hajjar,et al.  Representation of Concrete-Filled Steel Tube Cross-Section Strength , 1996 .

[17]  Wai-Fah Chen,et al.  Plasticity for Structural Engineers , 1988 .

[18]  Stavroula J. Pantazopoulou,et al.  Role of Expansion on Mechanical Behavior of Concrete , 1995 .

[19]  Dennis Lam,et al.  Axial capacity of circular concrete-filled tube columns , 2004 .

[20]  Bahram M. Shahrooz,et al.  Strength of Short and Long Concrete-Filled Tubular Columns , 1999 .

[21]  J. Dario Aristizabal-Ochoa,et al.  Biaxial Interaction Diagrams for Short RC Columns of Any Cross Section , 1999 .

[22]  Manuel L. Romero,et al.  A fast stress integration algorithm for reinforced concrete sections with axial loads and biaxial bending , 2004 .

[23]  Helmut G. L. Prion,et al.  Beam-column behaviour of steel tubes filled with high strength concrete , 1994 .