Design and analysis of molecular motifs for specific recognition of RNA.

[1]  J. Sambrook,et al.  Molecular Cloning: A Laboratory Manual , 2001 .

[2]  M. Palumbo Advances in DNA Sequence Specific Agents , 1998 .

[3]  D. Lloyd,et al.  Structural RNA mimetics: N3'-->P5' phosphoramidate DNA analogs of HIV-1 RRE and TAR RNA form A-type helices that bind specifically to Rev and Tat-related peptides. , 1997, Biochemistry.

[4]  W. Wilson,et al.  Inhibition of HIV-1 Rev-RRE interaction by diphenylfuran derivatives. , 1996, Biochemistry.

[5]  L. Kay,et al.  α Helix-RNA Major Groove Recognition in an HIV-1 Rev Peptide-RRE RNA Complex , 1996, Science.

[6]  I. Tinoco Nucleic Acid Structures, Energetics, and Dynamics , 1996 .

[7]  H. Schneider,et al.  Binuclear Lanthanide Complexes as Catalysts for the Hydrolysis of Bis(p‐nitrophenyl)‐phosphate and Double‐Stranded DNA , 1996 .

[8]  H. Schneider,et al.  A Cationic Cyclophane That Forms a Base-Pair Open Complex with RNA Duplexes , 1996 .

[9]  A. Frankel,et al.  Arginine-binding RNAs resembling TAR identified by in vitro selection. , 1996, Biochemistry.

[10]  K. Nagai RNA-protein complexes. , 1996, Current opinion in structural biology.

[11]  M. Green,et al.  A non-canonical base pair within the human immunodeficiency virus rev-responsive element is involved in both rev and small molecule recognition. , 1996, Chemistry & biology.

[12]  A D Ellington,et al.  RNA aptamers selected to bind human immunodeficiency virus type 1 Rev in vitro are Rev responsive in vivo , 1996, Journal of virology.

[13]  Patel,et al.  Molecular recognition in the bovine immunodeficiency virus Tat peptide-TAR RNA complex. , 1995, Chemistry & biology.

[14]  J. Williamson,et al.  Assignment and modeling of the Rev Response Element RNA bound to a Rev peptide using 13C-heteronuclear NMR , 1995, Journal of biomolecular NMR.

[15]  J. Puglisi,et al.  Solution Structure of a Bovine Immunodeficiency Virus Tat-TAR Peptide-RNA Complex , 1995, Science.

[16]  S Neidle,et al.  A crystallographic and spectroscopic study of the complex between d(CGCGAATTCGCG)2 and 2,5-bis(4-guanylphenyl)furan, an analogue of berenil. Structural origins of enhanced DNA-binding affinity. , 1995, Biochemistry.

[17]  D. Craik,et al.  NMR solution structure of the RNA-binding peptide from human immunodeficiency virus (type 1) Rev. , 1995, Biochemistry.

[18]  W. Wilson,et al.  Dicationic diarylfurans as anti-Pneumocystis carinii agents. , 1995, Journal of medicinal chemistry.

[19]  S. Kamitori,et al.  Multiple Binding Modes of Anticancer Drug Actinomycin D: X-Ray, Molecular Modeling, and Spectroscopic Studies of D(Gaagcttc)2-Actinomycin D Complexes and its Host DNA , 1994 .

[20]  Michael J. Gait,et al.  Methylphosphonate mapping of phosphate contacts critical for RNA recognition by the human immunodeficiency virus tat and rev proteins , 1994, Nucleic Acids Res..

[21]  D. Bartel,et al.  1H NMR studies of the high-affinity Rev binding site of the Rev responsive element of HIV-1 mRNA: base pairing in the core binding element. , 1994, Biochemistry.

[22]  Andrew D. Ellington,et al.  A three–dimensional model of the Rev–binding element of HIV–1 derived from analyses of aptamers , 1994, Nature Structural Biology.

[23]  W. Wilson,et al.  Design and synthesis of RNA-specific groove-binding cations: implications for antiviral drug design. , 1994, Journal of medicinal chemistry.

[24]  Michael R. Green,et al.  Small molecules that selectively block RNA binding of HIV-1 rev protein inhibit rev function and viral production , 1993, Cell.

[25]  Derek Hudson,et al.  RNA recognition by an isolated α helix , 1993, Cell.

[26]  M Yarus,et al.  Three small ribooligonucleotides with specific arginine sites. , 1993, Biochemistry.

[27]  D. Crothers,et al.  RNA binding assays for Tat-derived peptides: implications for specificity. , 1992, Biochemistry.

[28]  J. Puglisi,et al.  Conformation of the TAR RNA-arginine complex by NMR spectroscopy. , 1992, Science.

[29]  S. Kamitori,et al.  Crystal structure of the 2:1 complex between d(GAAGCTTC) and the anticancer drug actinomycin D. , 1992, Journal of molecular biology.

[30]  K. Nagai RNA-protein interactions , 1992 .

[31]  Michael R. Green,et al.  HIV-1 rev regulation involves recognition of non-Watson-Crick base pairs in viral RNA , 1991, Cell.

[32]  J. Veal,et al.  Modeling of nucleic acid complexes with cationic ligands: a specialized molecular mechanics force field and its application. , 1991, Journal of biomolecular structure & dynamics.

[33]  G. Zon,et al.  2D NMR investigation of the binding of the anticancer drug actinomycin D to duplexed dATGCGCAT: conformational features of the unique 2:1 adduct. , 1988, Biochemistry.

[34]  R. L. Jones,et al.  1H and 31P NMR investigations of actinomycin D binding selectivity with oligodeoxyribonucleotides containing multiple adjacent d(GC) sites. , 1988, Biochemistry.

[35]  B. Coxon,et al.  Nitrogen-15 nuclear magnetic resonance spectroscopy of neomycin B and related aminoglycosides , 1983 .

[36]  R. Lavery,et al.  The molecular electrostatic potential and steric accessibility of A-DNA. , 1981, Nucleic acids research.

[37]  R. Sauer,et al.  Major groove DNA recognition by β-sheets: the ribbon-helix-helix family of gene regulatory proteins , 1994 .

[38]  T. Ellenberger Getting a grip on DNA recognition: structures of the basic region leucine zipper, and the basic region helix-loop-helix DNA-binding domains , 1994 .

[39]  M. Malim,et al.  The HIV-1 Rev protein: prototype of a novel class of eukaryotic post-transcriptional regulators. , 1991, Trends in biochemical sciences.

[40]  Walter E. Hill,et al.  The Ribosome : structure, function, and evolution , 1990 .

[41]  Robert Zannetti,et al.  Landolt-bornstein, new series , 1974 .

[42]  Ernest Frederick Gale,et al.  The Molecular basis of antibiotic action , 1972 .

[43]  D. D. Perrin Dissociation Constants of Organic Bases in Aqueous Solution , 1965 .