Non-prismatic beams: A simple and effective Timoshenko-like model
暂无分享,去创建一个
Josef Eberhardsteiner | Ferdinando Auricchio | Josef Füssl | Elio Sacco | Giuseppe Balduzzi | Mehdi Aminbaghai | E. Sacco | F. Auricchio | J. Füssl | J. Eberhardsteiner | M. Aminbaghai | Giuseppe Balduzzi
[1] Pedro Gonzaga,et al. 3D-CURVED BEAM ELEMENT WITH VARYING CROSS-SECTIONAL AREA UNDER GENERALIZED LOADS , 2008 .
[2] John B. Kosmatka,et al. Exact stiffness matrix of a nonuniform beam—II. Bending of a timoshenko beam , 1993 .
[3] F. Romano,et al. Deflections of Timoshenko beam with varying cross-section , 1996 .
[4] Jimmy C. Ho,et al. The Effect of Taper on Section Constants for In-Plane Deformation of an Isotropic Strip , 2008 .
[5] Carlos E. S. Cesnik,et al. On Timoshenko-like modeling of initially curved and twisted composite beams , 2002 .
[6] C. Franciosi,et al. SOME FINITE ELEMENTS FOR THE STATIC ANALYSIS OF BEAMS WITH VARYING CROSS SECTION , 1998 .
[7] B. D. Reddy,et al. Mixed finite element methods for elastic rods of arbitrary geometry , 1993 .
[8] E. Sapountzakis,et al. Shear deformation effect in non-linear analysis of composite beams of variable cross section , 2008 .
[9] Stephen P. Timoshenko,et al. Elementary theory and problems , 1940 .
[10] E. H. Atkin. Tapered Beams: Suggested Solutions for Some Typical Aircraft Cases , 1938 .
[11] D. Hodges,et al. Asymptotic Beam Theory for Planar Deformation of Initially Curved Isotropic Strips , 2011 .
[12] Dewey H. Hodges,et al. The Effect of Taper on Section Constants for In-Plane Deformation of an Isotropic Strip , 2008 .
[13] Can Balkaya. Closure to “Behavior and Modeling of Nonprismatic Members Having T-Sections” by Can Balkaya , 2003 .
[14] A. Paglietti,et al. Remarks on the Current Theory of Shear Strength of Variable Depth Beams , 2009 .
[15] Y C Fung,et al. Buckling of Low Arches or Curved Beams of Small Curvature , 1952 .
[16] J. R. Banerjee,et al. Exact Bernoulli–Euler dynamic stiffness matrix for a range of tapered beams , 1985 .
[17] J. R. Banerjee,et al. Exact Bernoulli‐Euler static stiffness matrix for a range of tapered beam‐columns , 1986 .
[18] J. L. Krahula. Shear formula for beams of variable cross section , 1975 .
[19] Giulio Alfano,et al. Analytical derivation of a general 2D non-prismatic beam model based on the Hellinger–Reissner principle , 2015 .
[20] Can Balkaya,et al. Analysis of Frames with Nonprismatic Members , 1991 .
[22] S. Timoshenko,et al. Theory of elasticity , 1975 .
[23] E. C. Ozelton,et al. Timber Designers' Manual , 1975 .
[24] Loc Vu-Quoc,et al. Efficient evaluation of the flexibility of tapered I-beams accounting for shear deformations , 1992 .
[25] Richard M. Gutkowski,et al. Double-Tapered Glulam Beams: Finite Element Analysis , 1984 .
[26] Can Balkaya. Behavior and Modeling of Nonprismatic Members Having T-Sections , 2001 .
[27] Mehdi Aminbaghai,et al. Analytische Berechnung von Voutenstäben nach Theorie II. Ordnung unter Berücksichtigung der M‐ und Q‐Verformungen , 2006 .
[28] D. H. Young,et al. Theory of Structures , 1965 .
[29] Pedro Gonzaga,et al. Structural analysis of a curved beam element defined in global coordinates , 2008 .
[30] Marco Borri,et al. Composite beam analysis linear analysis of naturally curved and twisted anisotropic beams , 1992 .
[31] Arturo Tena-Colunga,et al. Stiffness Formulation for Nonprismatic Beam Elements , 1996 .
[32] D. Hodges,et al. Asymptotic Approach to Oblique Cross-Sectional Analysis of Beams , 2013 .
[33] Can Balkaya,et al. Discussion: Stiffness Formulation for Nonprismatic Beam Elements , 1997 .
[34] Ahmad Shooshtari,et al. An efficient procedure to find shape functions and stiffness matrices of nonprismatic Euler–Bernoulli and Timoshenko beam elements , 2010 .
[35] Carlos E. S. Cesnik,et al. Obliqueness effects in asymptotic cross-sectional analysis of composite beams , 2000 .
[36] Reza Attarnejad,et al. Basic displacement functions for free vibration analysis of non-prismatic Timoshenko beams , 2010 .
[37] H. Rubin. Analytische Berechnung von Stäben mit linear veränderlicher Höhe unter Berücksichtigung von M‐, Q‐ und N‐Verformungen , 1999 .
[38] Bruno A. Boley,et al. On the Accuracy of the Bernoulli-Euler Theory for Beams of Variable Section , 1963 .
[39] Ferdinando Auricchio,et al. The dimensional reduction approach for 2D non-prismatic beam modelling: A solution based on Hellinger–Reissner principle , 2015 .
[40] Otto T. Bruhns,et al. Advanced Mechanics of Solids , 1982 .
[41] Sundaramoorthy Rajasekaran,et al. Equations of Curved Beams , 1989 .
[42] Dewey H. Hodges,et al. Stress and strain recovery for the in-plane deformation of an isotropic tapered strip-beam , 2010 .