Coupling OGC WPS and W3C PROV for provenance-aware geoprocessing workflows

Abstract With the advancement of cyberinfrastructure, an increasing number of geoprocessing functions are available on the Web. Scientific workflows are frequently used to orchestrate distributed services to address complex geospatial problems. In the workflow systems, geospatial data provenance is extremely valuable to evaluate data reliability and usability, also reproduce data products, especially considering the heterogeneous data and computing resources in the Web environment. W3C PROV is an expressive model for provenance information in the general domain, which is extended to support OGC WPS in describing provenance in geoprocessing workflows. A conceptual model that couples OGC WPS and W3C PROV is proposed, and the XML schema definitions of the model are also implemented. The proposed model can provide more complete provenance information, including used geospatial data and geoprocessing services, and their plans, which helps advance provenance awareness in workflow systems. Coupling OGC WPS and W3C PROV can benefit from the maturity and interoperability of the existing standards.

[1]  S. K. McFeeters The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features , 1996 .

[2]  Antonio S. Cofiño,et al.  The R-based climate4R open framework for reproducible climate data access and post-processing , 2019, Environ. Model. Softw..

[3]  Liping Di,et al.  Sharing geospatial provenance in a service-oriented environment , 2011, Comput. Environ. Urban Syst..

[4]  Liping Di,et al.  GeoPW: Laying Blocks for the Geospatial Processing Web , 2010, Trans. GIS.

[5]  Peng Yue,et al.  A geoprocessing workflow system for environmental monitoring and integrated modelling , 2015, Environ. Model. Softw..

[6]  Luc Moreau,et al.  The Foundations for Provenance on the Web , 2010, Found. Trends Web Sci..

[7]  Anne E. Trefethen,et al.  Cyberinfrastructure for e-Science , 2005, Science.

[8]  Joan Masó-Pau,et al.  W3C PROV to describe provenance at the dataset, feature and attribute levels in a distributed environment , 2017, Comput. Environ. Urban Syst..

[9]  Joan Masó-Pau,et al.  A provenance metadata model integrating ISO geospatial lineage and the OGC WPS: Conceptual model and implementation , 2019, Trans. GIS.

[10]  Liping Di,et al.  Geoscience Data Provenance: An Overview , 2013, IEEE Transactions on Geoscience and Remote Sensing.

[11]  David Medyckyj-Scott,et al.  Implementations of fine-grained automated data provenance to support transparent environmental modelling , 2019, Environ. Model. Softw..

[12]  ByoungChul Ko,et al.  Classification of Potential Water Bodies Using Landsat 8 OLI and a Combination of Two Boosted Random Forest Classifiers , 2015, Sensors.

[13]  Yuanzheng Shao,et al.  Implementation of Geospatial Data Provenance in a Web Service Workflow Environment With ISO 19115 and ISO 19115-2 Lineage Model , 2013, IEEE Transactions on Geoscience and Remote Sensing.

[14]  Matthias Drusch,et al.  Sentinel-2: ESA's Optical High-Resolution Mission for GMES Operational Services , 2012 .

[15]  Athanasios V. Vasilakos,et al.  Web services composition: A decade's overview , 2014, Inf. Sci..

[16]  Xiaoming Zhang,et al.  A Comparison of Land Surface Water Mapping Using the Normalized Difference Water Index from TM, ETM+ and ALI , 2013, Remote. Sens..

[17]  Rahul Ramachandran,et al.  Recent Activities in Earth Data Science [Technical Committees] , 2016, IEEE Geoscience and Remote Sensing Magazine.

[18]  Peng Yue,et al.  A Linked Data Approach for Geospatial Data Provenance , 2013, IEEE Transactions on Geoscience and Remote Sensing.

[19]  Peng Yue,et al.  Model provenance tracking and inference for integrated environmental modelling , 2017, Environ. Model. Softw..

[20]  I. Foster,et al.  Service-Oriented Science , 2005, Science.

[21]  Peng Yue,et al.  Towards intelligent GIServices , 2015, Earth Science Informatics.

[22]  Boualem Benatallah,et al.  Web Service Composition , 2015 .

[23]  Mohamed M. Morsy,et al.  Integrating scientific cyberinfrastructures to improve reproducibility in computational hydrology: Example for HydroShare and GeoTrust , 2018, Environ. Model. Softw..

[24]  Peng Yue,et al.  The Geoprocessing Web , 2012, Comput. Geosci..

[25]  Nathan R. Swain,et al.  Simplifying the deployment of OGC web processing services (WPS) for environmental modelling - Introducing Tethys WPS Server , 2019, Environ. Model. Softw..

[26]  Luc Moreau,et al.  PROV-Overview. An Overview of the PROV Family of Documents , 2013 .

[27]  Liping Di,et al.  Adding Geospatial Data Provenance into SDI—A Service-Oriented Approach , 2015, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[28]  Benjamin Pross,et al.  OGC® WPS 2.0 Interface Standard , 2015 .

[29]  Yolanda Gil,et al.  PROV-DM: The PROV Data Model , 2013 .

[30]  Peng Yue,et al.  Advancing interoperability of geospatial data provenance on the web: Gap analysis and strategies , 2018, Comput. Geosci..

[31]  Luc Moreau,et al.  PROV-XML: The PROV XML Schema , 2013 .