QUANTUM COMPUTATION IN QUANTUM-HALL SYSTEMS

Abstract We describe a quantum information processor (quantum computer) based on the hyperfine interactions between the conduction electrons and nuclear spins embedded in a two-dimensional electron system in the quantum-Hall regime. Nuclear spins can be controlled individually by electromagnetic pulses. Their interactions, which are of the spin-exchange type, can be possibly switched on and off pair-wise dynamically, for nearest neighbors, by controlling impurities. We also propose the way to feed in the initial data and explore ideas for reading off the final results.

[1]  D. DiVincenzo,et al.  Quantum computation with quantum dots , 1997, cond-mat/9701055.

[2]  Griffiths,et al.  Semiclassical Fourier transform for quantum computation. , 1995, Physical review letters.

[3]  E. Knill,et al.  Theory of quantum error-correcting codes , 1997 .

[4]  Raymond Laflamme,et al.  Quantum Computers, Factoring, and Decoherence , 1995, Science.

[5]  Steven P. Hotaling Radix-R>2 quantum computation , 1997, Defense, Security, and Sensing.

[6]  Dorit Aharonov,et al.  Fault-tolerant quantum computation with constant error , 1997, STOC '97.

[7]  Christoph Dürr,et al.  A Quantum Algorithm for Finding the Minimum , 1996, ArXiv.

[8]  K. Klitzing,et al.  Magnetoresistance oscillations in a two-dimensional electron gas induced by a submicrometer periodic potential , 1989 .

[9]  I. Vagner,et al.  Hyperfine interactions in quantum Hall systems , 1995 .

[10]  DiVincenzo Two-bit gates are universal for quantum computation. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[11]  Raymond Laflamme,et al.  A Theory of Quantum Error-Correcting Codes , 1996 .

[12]  Kouwenhoven,et al.  Local dynamic nuclear polarization using quantum point contacts. , 1994, Physical review letters.

[13]  Peter W. Shor,et al.  Fault-tolerant quantum computation , 1996, Proceedings of 37th Conference on Foundations of Computer Science.

[14]  R. Jozsa,et al.  Quantum Computation and Shor's Factoring Algorithm , 1996 .

[15]  Winkler,et al.  Landau band conductivity in a two-dimensional electron system modulated by an artificial one-dimensional superlattice potential. , 1989, Physical review letters.

[16]  K. West,et al.  Electronic states in gallium arsenide quantum wells probed by optically pumped NMR. , 1995, Science.

[17]  C. Slichter Principles of magnetic resonance , 1963 .

[18]  Andrew M. Steane The ion trap quantum information processor , 1996 .

[19]  G. Dorda,et al.  New Method for High-Accuracy Determination of the Fine-Structure Constant Based on Quantized Hall Resistance , 1980 .

[20]  S. Girvin,et al.  The Quantum Hall Effect , 1987 .

[21]  Lloyd,et al.  Almost any quantum logic gate is universal. , 1995, Physical review letters.

[22]  Quantum Physics and Computers , 1996, quant-ph/9612014.

[23]  M. Gell-Mann,et al.  Physics Today. , 1966, Applied optics.

[24]  J. Cirac,et al.  Quantum Computations with Cold Trapped Ions. , 1995, Physical review letters.

[25]  Hood,et al.  Measurement of conditional phase shifts for quantum logic. , 1995, Physical review letters.

[26]  Ekert,et al.  Quantum Error Correction for Communication. , 1996 .

[27]  J. Preskill Reliable quantum computers , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[28]  Daniel Gottesman,et al.  Stabilizer Codes and Quantum Error Correction , 1997, quant-ph/9705052.

[29]  D. DiVincenzo TOPICS IN QUANTUM COMPUTERS , 1996, cond-mat/9612126.

[30]  N. Gershenfeld,et al.  Bulk Spin-Resonance Quantum Computation , 1997, Science.

[31]  West,et al.  Evidence for an electric-field-induced phase transition in a spin-polarized two-dimensional electron gas. , 1992, Physical review. B, Condensed matter.

[32]  Berg,et al.  Magnetoquantum oscillations of the nuclear-spin-lattice relaxation near a two-dimensional electron gas. , 1990, Physical review letters.

[33]  Lov K. Grover A fast quantum mechanical algorithm for estimating the median , 1996, quant-ph/9607024.

[34]  King,et al.  Demonstration of a fundamental quantum logic gate. , 1995, Physical review letters.

[35]  Pérès,et al.  Reversible logic and quantum computers. , 1985, Physical review. A, General physics.

[36]  P. Benioff Quantum mechanical hamiltonian models of turing machines , 1982 .

[37]  Barenco,et al.  Elementary gates for quantum computation. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[38]  Vagner,et al.  Nuclear spin-lattice relaxation: A microscopic local probe for systems exhibiting the quantum Hall effect. , 1988, Physical review letters.

[39]  A. Messiah Quantum Mechanics , 1961 .

[40]  J. Linnett,et al.  Quantum mechanics , 1975, Nature.

[41]  D. C. Tsui,et al.  Two-Dimensional Magnetotransport in the Extreme Quantum Limit , 1982 .

[42]  Peter W. Shor,et al.  Algorithms for quantum computation: discrete logarithms and factoring , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[43]  E. R. Andrew Spin Temperature and Nuclear Magnetic Resonance in Solids , 1971 .

[44]  L. Landau Quantum Mechanics-Nonrelativistic Theory , 1958 .