Quantum Error Correction with Biased Noise

Quantum computing offers powerful new techniques for speeding up the calculation of many classically intractable problems. Quantum algorithms can allow for the efficient simulation of physical systems, with applications to basic research, chemical modeling, and drug discovery; other algorithms have important implications for cryptography and internet security. At the same time, building a quantum computer is a daunting task, requiring the coherent manipulation of systems with many quantum degrees of freedom while preventing environmental noise from interacting too strongly with the system. Fortunately, we know that, under reasonable assumptions, we can use the techniques of quantum error correction and fault tolerance to achieve an arbitrary reduction in the noise level. In this thesis, we look at how additional information about the structure of noise, or "noise bias," can improve or alter the performance of techniques in quantum error correction and fault tolerance. In Chapter 2, we explore the possibility of designing certain quantum gates to be extremely robust with respect to errors in their operation. This naturally leads to structured noise where certain gates can be implemented in a protected manner, allowing the user to focus their protection on the noisier unprotected operations. In Chapter 3, we examine how to tailor error-correcting codes and fault-tolerant quantum circuits in the presence of dephasing biased noise, where dephasing errors are far more common than bit-flip errors. By using an appropriately asymmetric code, we demonstrate the ability to improve the amount of error reduction and decrease the physical resources required for error correction. In Chapter 4, we analyze a variety of protocols for distilling magic states, which enable universal quantum computation, in the presence of faulty Clifford operations. Here again there is a hierarchy of noise levels, with a fixed error rate for faulty gates, and a second rate for errors in the distilled states which decreases as the states are distilled to better quality. The interplay of of these different rates sets limits on the achievable distillation and how quickly states converge to that limit.

[1]  Prabha Mandayam,et al.  Simple approach to approximate quantum error correction based on the transpose channel , 2009, 0909.0931.

[2]  Adam Paetznick,et al.  Universal fault-tolerant quantum computation with only transversal gates and error correction. , 2013, Physical review letters.

[3]  J. Preskill,et al.  Topological quantum memory , 2001, quant-ph/0110143.

[4]  Cody Jones,et al.  Multilevel distillation of magic states for quantum computing , 2012, 1210.3388.

[5]  J. Snowdon,et al.  Concatenated coding in the presence of dephasing , 2000 .

[6]  A. Church An Unsolvable Problem of Elementary Number Theory , 1936 .

[7]  Dorit Aharonov,et al.  Fault-tolerant quantum computation with constant error , 1997, STOC '97.

[8]  D. Deutsch Quantum theory, the Church–Turing principle and the universal quantum computer , 1985, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[9]  Raymond Laflamme,et al.  The robustness of magic state distillation against errors in Clifford gates , 2012, Quantum Inf. Comput..

[10]  Ronald Reagan,et al.  Public papers of the presidents of the United States , 1982 .

[11]  E. Knill,et al.  Threshold Accuracy for Quantum Computation , 1996, quant-ph/9610011.

[12]  А Е Китаев,et al.  Квантовые вычисления: алгоритмы и исправление ошибок@@@Quantum computations: algorithms and error correction , 1997 .

[13]  M. Freedman,et al.  Simulation of Topological Field Theories¶by Quantum Computers , 2000, quant-ph/0001071.

[14]  Michael A. Nielsen,et al.  The Solovay-Kitaev algorithm , 2006, Quantum Inf. Comput..

[15]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[16]  N. Sloane,et al.  Quantum error correction via codes over GF(4) , 1996, Proceedings of IEEE International Symposium on Information Theory.

[17]  Andrew W. Cross,et al.  A comparative code study for quantum fault tolerance , 2007, Quantum Inf. Comput..

[18]  A. Kitaev,et al.  Universal quantum computation with ideal Clifford gates and noisy ancillas (14 pages) , 2004, quant-ph/0403025.

[19]  Alexei Kitaev,et al.  Protected qubit based on a superconducting current mirror , 2006 .

[20]  B. Recht,et al.  Efficient discrete approximations of quantum gates , 2001, quant-ph/0111031.

[21]  S. Lloyd,et al.  Quantum Algorithm Providing Exponential Speed Increase for Finding Eigenvalues and Eigenvectors , 1998, quant-ph/9807070.

[22]  J. Preskill Reliable quantum computers , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[23]  Robert Raussendorf,et al.  Topological fault-tolerance in cluster state quantum computation , 2007 .

[24]  John Preskill,et al.  Optimal Bacon-Shor codes , 2012, Quantum Inf. Comput..

[25]  A. Kitaev Fault tolerant quantum computation by anyons , 1997, quant-ph/9707021.

[26]  Shor,et al.  Scheme for reducing decoherence in quantum computer memory. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[27]  John Preskill,et al.  Quantum computation of scattering in scalar quantum field theories , 2011, Quantum Inf. Comput..

[28]  A. G. White,et al.  Ancilla-assisted quantum process tomography. , 2003, Physical review letters.

[29]  S. J. Devitt,et al.  Asymmetric quantum error correction via code conversion , 2007, 0708.3969.

[30]  Andrew Steane,et al.  Active Stabilization, Quantum Computation, and Quantum State Synthesis , 1997 .

[31]  E. Knill Quantum computing with realistically noisy devices , 2005, Nature.

[32]  Peter W. Shor,et al.  Algorithms for quantum computation: discrete logarithms and factoring , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[33]  D. Gottesman An Introduction to Quantum Error Correction and Fault-Tolerant Quantum Computation , 2009, 0904.2557.

[34]  John Preskill,et al.  Fault-tolerant quantum computation with asymmetric Bacon-Shor codes , 2012, 1211.1400.

[35]  Andrew M. Steane,et al.  Fast fault-tolerant filtering of quantum codewords , 2008 .

[36]  A. Steane Multiple-particle interference and quantum error correction , 1996, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[37]  J. H. Cole,et al.  Error correction optimisation in the presence of X/Z asymmetry , 2007, 0709.3875.

[38]  R. Feynman Simulating physics with computers , 1999 .

[39]  M. Head‐Gordon,et al.  Simulated Quantum Computation of Molecular Energies , 2005, Science.

[40]  A. Kitaev,et al.  Quantum superinductor with tunable nonlinearity. , 2012, Physical review letters.

[41]  John Preskill,et al.  Fault-tolerant computing with biased-noise superconducting qubits: a case study , 2008, 0806.0383.

[42]  Emanuel Knill,et al.  Magic-state distillation with the four-qubit code , 2012, Quantum Inf. Comput..

[43]  D. Abrams,et al.  Simulation of Many-Body Fermi Systems on a Universal Quantum Computer , 1997, quant-ph/9703054.

[44]  M. Devoret,et al.  Implementation of low-loss superinductances for quantum circuits , 2012, 1206.2964.

[45]  Cody Jones,et al.  Distillation protocols for Fourier states in quantum computing , 2013, Quantum Inf. Comput..

[46]  G M D'Ariano,et al.  Quantum tomography for measuring experimentally the matrix elements of an arbitrary quantum operation. , 2001, Physical review letters.

[47]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[48]  Daniel Gottesman,et al.  Stabilizer Codes and Quantum Error Correction , 1997, quant-ph/9705052.

[49]  M. Devoret,et al.  Microwave characterization of Josephson junction arrays: implementing a low loss superinductance. , 2012, Physical review letters.

[50]  Avinatan Hassidim,et al.  Quantum Refrigerator , 2013 .

[51]  Daniel A. Lidar,et al.  Quantum Process Tomography: Resource Analysis of Different Strategies , 2007, quant-ph/0702131.

[52]  Shor,et al.  Good quantum error-correcting codes exist. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[53]  J. Preskill,et al.  Encoding a qubit in an oscillator , 2000, quant-ph/0008040.

[54]  L. B. Ioffe,et al.  Possible realization of an ideal quantum computer in Josephson junction array , 2002 .

[55]  John Preskill,et al.  Protected gates for superconducting qubits , 2013, 1302.4122.

[56]  James McClain On exactitude in geographic information science , 2014 .

[57]  Lov K. Grover A fast quantum mechanical algorithm for database search , 1996, STOC '96.

[58]  Panos Aliferis,et al.  Fibonacci scheme for fault-tolerant quantum computation , 2007, 0709.3603.

[59]  Jens Koch,et al.  Fluxonium: Single Cooper-Pair Circuit Free of Charge Offsets , 2009, Science.

[60]  John Preskill,et al.  Fault-tolerant quantum computation against biased noise , 2007, 0710.1301.

[61]  D. Deutsch Quantum computational networks , 1989, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[62]  A. Turing On Computable Numbers, with an Application to the Entscheidungsproblem. , 1937 .

[63]  Bryan Eastin,et al.  Distilling one-qubit magic states into Toffoli states , 2012, 1212.4872.

[64]  Julien Vidal,et al.  Pairing of Cooper pairs in a fully frustrated Josephson-junction chain. , 2002, Physical review letters.

[65]  A. Kitaev Quantum Error Correction with Imperfect Gates , 1997 .

[66]  Sergey Bravyi,et al.  Classification of topologically protected gates for local stabilizer codes. , 2012, Physical review letters.

[67]  Viola,et al.  Theory of quantum error correction for general noise , 2000, Physical review letters.

[68]  Panos Aliferis,et al.  Subsystem fault tolerance with the Bacon-Shor code. , 2007, Physical review letters.

[69]  E. Knill Fault-Tolerant Postselected Quantum Computation: Schemes , 2004, quant-ph/0402171.

[70]  E. Knill,et al.  Resilient quantum computation: error models and thresholds , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[71]  Isaac L. Chuang,et al.  Prescription for experimental determination of the dynamics of a quantum black box , 1997 .

[72]  Ben Reichardt,et al.  Fault-tolerant ancilla preparation and noise threshold lower bounds for the 23-qubit Golay code , 2011, Quantum Inf. Comput..

[73]  Peter W. Shor,et al.  Fault-tolerant quantum computation , 1996, Proceedings of 37th Conference on Foundations of Computer Science.

[74]  Cody Jones,et al.  Low-overhead constructions for the fault-tolerant Toffoli gate , 2012, 1212.5069.

[75]  D. Bacon Operator quantum error-correcting subsystems for self-correcting quantum memories , 2005, quant-ph/0506023.

[76]  S. Bravyi,et al.  Magic-state distillation with low overhead , 2012, 1209.2426.

[77]  Bryan Eastin,et al.  Restrictions on transversal encoded quantum gate sets. , 2008, Physical review letters.

[78]  R. Feynman Quantum mechanical computers , 1986 .

[79]  A. Fowler,et al.  High-threshold universal quantum computation on the surface code , 2008, 0803.0272.

[80]  N. Bohr II - Can Quantum-Mechanical Description of Physical Reality be Considered Complete? , 1935 .

[81]  Dorit Aharonov,et al.  Fault-tolerant Quantum Computation with Constant Error Rate * , 1999 .