Lithium Dendrite Growth in Glassy and Rubbery Nanostructured Block Copolymer Electrolytes

Enabling the use of lithium metal anodes is a critical step required to dramatically increase the energy density of rechargeable batteries. However, dendrite growth in lithium metal batteries, and a lack of fundamental understanding of the factors governing this growth, is a limiting factor preventing their adoption. Herein we present the effect of battery cycling temperature, ranging from 90 to 120 ◦ C, on dendrite growth through a polystyrene-block-poly(ethylene oxide)-based electrolyte. This temperature range encompasses the glass transition temperature of polystyrene (107 ◦ C). A slight increase in the cycling temperature of symmetric lithium-polymer-lithium cells from 90 to 105 ◦ C results in a factor of five decrease in the amount of charge that can be passed before short circuit. Synchrotron hard X-ray microtomography experiments reveal a shift in dendrite location from primarily within the lithium electrode at 90 ◦ C, to primarily within the electrolyte at 105 ◦ C. Rheological measurements show a large change in mechanical properties over this temperature window. Time-temperature superposition was used to interpret the rheological data. Dendrite growth characteristics and cell lifetimes correlate with the temperature-dependent shift factors used for time-temperature superposition. Our work represents a step toward understanding the factors that govern lithium dendrite growth in viscoelastic electrolytes. © The Author(s) 2014. Published by ECS. This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 License (CC BY, http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse of the work in any

[1]  Kevin G. Gallagher,et al.  Quantifying the promise of lithium–air batteries for electric vehicles , 2014 .

[2]  N. Balsara,et al.  Thermodynamics of block copolymers with and without salt. , 2014, The journal of physical chemistry. B.

[3]  Marco Stampanoni,et al.  Visualization and Quantification of Electrochemical and Mechanical Degradation in Li Ion Batteries , 2013, Science.

[4]  J. Newman,et al.  Comparing the Energy Content of Batteries, Fuels, and Materials , 2013 .

[5]  Keun-Ho Choi,et al.  Mechanically compliant and lithium dendrite growth-suppressing composite polymer electrolytes for flexible lithium-ion batteries , 2013 .

[6]  A. A. MacDowell,et al.  X-ray micro-tomography at the Advanced Light Source , 2012, Optics & Photonics - Optical Engineering + Applications.

[7]  Haoshen Zhou,et al.  Electrochemical performance and reaction mechanism of all-solid-state lithium–air batteries composed of lithium, Li1+xAlyGe2−y(PO4)3 solid electrolyte and carbon nanotube air electrode , 2012 .

[8]  Alexej Jerschow,et al.  7Li MRI of Li batteries reveals location of microstructural lithium. , 2012, Nature materials.

[9]  Lynden A. Archer,et al.  Ionic liquid-nanoparticle hybrid electrolytes , 2012 .

[10]  Jean-Marie Tarascon,et al.  Li-O2 and Li-S batteries with high energy storage. , 2011, Nature materials.

[11]  T. Lodge,et al.  Viscoelastic Properties, Ionic Conductivity, and Materials Design Considerations for Poly(styrene-b-ethylene oxide-b-styrene)-Based Ion Gel Electrolytes , 2011 .

[12]  K. M. Abraham,et al.  Lithium-air and lithium-sulfur batteries , 2011 .

[13]  Tao Zhang,et al.  Effect of nano-silica filler in polymer electrolyte on Li dendrite formation in Li/poly(ethylene oxide)–Li(CF3SO2)2N/Li , 2010 .

[14]  S. Marchesini,et al.  Compressive phase contrast tomography , 2010, Optical Engineering + Applications.

[15]  Hailong Chen,et al.  In situ NMR observation of the formation of metallic lithium microstructures in lithium batteries. , 2010, Nature materials.

[16]  Amish J. Patel,et al.  Dynamic Signatures of Microphase Separation in a Block Copolymer Melt Determined by X-ray Photon Correlation Spectroscopy and Rheology , 2010 .

[17]  Dennis W. Dees,et al.  Morphological Transitions on Lithium Metal Anodes , 2009 .

[18]  A. Hexemer,et al.  Effect of Molecular Weight and Salt Concentration on Conductivity of Block Copolymer Electrolytes , 2009 .

[19]  H. Honbo,et al.  Electrochemical properties and Li deposition morphologies of surface modified graphite after grinding , 2009 .

[20]  Alan C. West,et al.  Effect of Electrolyte Composition on Lithium Dendrite Growth , 2008 .

[21]  Moon Jeong Park,et al.  Effect of molecular weight on the mechanical and electrical properties of block copolymer electrolytes , 2007 .

[22]  N. Tschoegl,et al.  Time‐temperature superposition in thermorheologically complex materials , 2007 .

[23]  J. Tarascon,et al.  Lithium metal stripping/plating mechanisms studies: A metallurgical approach , 2006 .

[24]  Philip J. Bones,et al.  Image Reconstruction from Incomplete Data V , 2006 .

[25]  P. Bruce,et al.  Rechargeable LI2O2 electrode for lithium batteries. , 2006, Journal of the American Chemical Society.

[26]  Charles W. Monroe,et al.  The Impact of Elastic Deformation on Deposition Kinetics at Lithium/Polymer Interfaces , 2005 .

[27]  J. Newman,et al.  The Effect of Interfacial Deformation on Electrodeposition Kinetics , 2004 .

[28]  Charles W. Monroe,et al.  Dendrite Growth in Lithium/Polymer Systems A Propagation Model for Liquid Electrolytes under Galvanostatic Conditions , 2003 .

[29]  T. Sakai,et al.  All Solid-State Lithium-Polymer Battery Using a Self-Cross-Linking Polymer Electrolyte , 2003 .

[30]  Hee‐Tak Kim,et al.  Rechargeable Lithium Sulfur Battery I. Structural Change of Sulfur Cathode During Discharge and Charge , 2003 .

[31]  Jean-Marie Tarascon,et al.  Live Scanning Electron Microscope Observations of Dendritic Growth in Lithium/Polymer Cells , 2002 .

[32]  M. Armand,et al.  Issues and challenges facing rechargeable lithium batteries , 2001, Nature.

[33]  M. Rosso,et al.  Onset of dendritic growth in lithium/polymer cells , 2001 .

[34]  Noboru Oyama,et al.  Inhibition effect of covalently cross-linked gel electrolytes on lithium dendrite formation , 2001 .

[35]  B. Scrosati,et al.  Transport and interfacial properties of composite polymer electrolytes , 2000 .

[36]  Ulrich Bonse,et al.  Developments in X-Ray Tomography V , 1999 .

[37]  J. Yamaki,et al.  A consideration of lithium cell safety , 1999 .

[38]  J. Yamaki,et al.  A consideration of the morphology of electrochemically deposited lithium in an organic electrolyte , 1997 .

[39]  E. Eweka,et al.  Electrolytes and additives for high efficiency lithium cycling , 1997 .

[40]  R. Colby Block copolymer dynamics , 1996 .

[41]  K. M. Abraham,et al.  A Polymer Electrolyte‐Based Rechargeable Lithium/Oxygen Battery , 1996 .

[42]  R. Messina,et al.  Behavior of lithium-electrolyte interface during cycling in some ether-carbonate and carbonate mixtures , 1995 .

[43]  H. Tamura,et al.  X-ray photoelectron spectroscopic analysis and scanning electron microscopic observation of the lithium surface immersed in nonaqueous solvents , 1994 .

[44]  Nancy J. Dudney,et al.  Fabrication and characterization of amorphous lithium electrolyte thin films and rechargeable thin-film batteries , 1992 .

[45]  K. M. Abraham,et al.  Li+‐Conductive Solid Polymer Electrolytes with Liquid‐Like Conductivity , 1990 .

[46]  M. Armand,et al.  Assessment of polymer-electrolyte batteries for EV and ambient temperature applications , 1985 .

[47]  Michel Armand,et al.  Polymer solid electrolytes - an overview , 1983 .

[48]  M. Armand,et al.  Microscopic investigation of ionic conductivity in alkali metal salts-poly(ethylene oxide) adducts , 1983 .

[49]  B. Steele,et al.  Effects of inert fillers on the mechanical and electrochemical properties of lithium salt-poly(ethylene oxide) polymer electrolytes , 1982 .

[50]  B. Steele,et al.  Thermal history — conductivity relationship in lithium salt-poly (ethylene oxide) complex polymer electrolytes , 1981 .

[51]  K. Abraham,et al.  A Lithium/Dissolved Sulfur Battery with an Organic Electrolyte , 1979 .

[52]  R. Cohen,et al.  Comparison of the Dynamic Mechanical Properties of Two Styrene‐Butadiene‐Styrene Triblock Copolymers with 1,2‐ and 1,4‐Polybutadiene Center Blocks , 1976 .

[53]  P. V. Wright,et al.  Complexes of alkali metal ions with poly(ethylene oxide) , 1973 .

[54]  J. L. Barton,et al.  The electrolytic growth of dendrites from ionic solutions , 1962, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[55]  M. Huggins Viscoelastic Properties of Polymers. , 1961 .

[56]  J. Ferry Mechanical Properties of Substances of High Molecular Weight. VI. Dispersion in Concentrated Polymer Solutions and its Dependence on Temperature and Concentration , 1950 .

[57]  A. MacDowell,et al.  Detection of subsurface structures underneath dendrites formed on cycled lithium metal electrodes. , 2014, Nature materials.

[58]  Jiulin Wang,et al.  A novel solid composite polymer electrolyte based on poly(ethylene oxide) segmented polysulfone copolymers for rechargeable lithium batteries , 2013 .

[59]  N. Balsara,et al.  Lithium Metal Stability in Batteries with Block Copolymer Electrolytes , 2013 .

[60]  A. Hexemer,et al.  Resolution of the Modulus versus Adhesion Dilemma in Solid Polymer Electrolytes for Rechargeable Lithium Metal Batteries , 2012 .

[61]  M. Rosso,et al.  Study of the evolution of the Li/electrolyte interface during cycling of Li/polymer batteries , 2001 .

[62]  Bruno Scrosati,et al.  Fast Ion Transport in Solids , 1993 .

[63]  F. Bates,et al.  Rheology of Ordered and Disordered Symmetric Poly(Ethylenepropylene)-Poly(ethylethylene) Diblock Copolymers , 1990 .

[64]  M. Ratner,et al.  Vibrational spectroscopy and structure of polymer electrolytes, poly(ethylene oxide) complexes of alkali metal salts , 1981 .

[65]  N. Tschoegl,et al.  Time-Temperature Superposition in Styrene/Butadiene/Styrene Block Copolymers , 1974 .