Mutation in the LPS outer core biosynthesis gene, galU, affects LPS interaction with the RTX toxins ApxI and ApxII and cytolytic activity of Actinobacillus pleuropneumoniae serotype 1

Lipopolysaccharides (LPS) and Apx toxins are major virulence factors of Actinobacillus pleuropneumoniae, a pathogen of the respiratory tract of pigs. Here, we evaluated the effect of LPS core truncation in haemolytic and cytotoxic activities of this microorganism. We previously generated a highly attenuated galU mutant of A. pleuropneumoniae serotype 1 that has an LPS molecule lacking the GalNAc‐Gal II‐Gal I outer core residues. Our results demonstrate that this mutant exhibits wild‐type haemolytic activity but is significantly less cytotoxic to porcine alveolar macrophages. However, no differences were found in gene expression and secretion of the haemolytic and cytotoxic toxins ApxI and ApxII, both secreted by A. pleuropneumoniae serotype 1. This suggests that the outer core truncation mediated by the galU mutation affects the toxins in their cytotoxic activities. Using both ELISA and surface plasmon resonance binding assays, we demonstrate a novel interaction between LPS and the ApxI and ApxII toxins via the core oligosaccharide. Our results indicate that the GalNAc‐Gal II‐Gal I trisaccharide of the outer core is fundamental to mediating LPS/Apx interactions. The present study suggests that a lack of binding between LPS and ApxI/II affects the cytotoxicity and virulence of A. pleuropneumoniae.

[1]  S. Wai,et al.  Release of the type I secreted α‐haemolysin via outer membrane vesicles from Escherichia coli , 2006 .

[2]  M. Jacques,et al.  Truncation of the Lipopolysaccharide Outer Core Affects Susceptibility to Antimicrobial Peptides and Virulence of Actinobacillus pleuropneumoniae Serotype 1* , 2005, Journal of Biological Chemistry.

[3]  Helen Conroy,et al.  Bordetella pertussis Adenylate Cyclase Toxin Modulates Innate and Adaptive Immune Responses: Distinct Roles for Acylation and Enzymatic Activity in Immunomodulation and Cell Death1 , 2005, The Journal of Immunology.

[4]  L. Bakas,et al.  Role of lipopolysaccharide on the structure and function of α-hemolysin from Escherichia coli , 2005 .

[5]  D. Desmecht,et al.  How Mannheimia haemolytica defeats host defence through a kiss of death mechanism. , 2005, Veterinary research.

[6]  S. Xiao,et al.  Construction and characterization of a live, attenuated apxIICA inactivation mutant of Actinobacillus pleuropneumoniae lacking a drug resistance marker. , 2005, FEMS microbiology letters.

[7]  J. Brisson,et al.  Structural analysis of the lipopolysaccharide derived core oligosaccharides of Actinobacillus pleuropneumoniae serotypes 1, 2, 5a and the genome strain 5b. , 2004, Carbohydrate research.

[8]  F. Goñi,et al.  Membrane Restructuring by Bordetella pertussis Adenylate Cyclase Toxin, a Member of the RTX Toxin Family , 2004, Journal of bacteriology.

[9]  M. Jacques Surface polysaccharides and iron-uptake systems of Actinobacillus pleuropneumoniae. , 2004, Canadian journal of veterinary research = Revue canadienne de recherche veterinaire.

[10]  K. Mills,et al.  Adenylate Cyclase Toxin from Bordetella pertussis Synergizes with Lipopolysaccharide To Promote Innate Interleukin-10 Production and Enhances the Induction of Th2 and Regulatory T Cells , 2004, Infection and Immunity.

[11]  M. Kuehn,et al.  Lipopolysaccharide 3-Deoxy-d-manno-octulosonic Acid (Kdo) Core Determines Bacterial Association of Secreted Toxins* , 2004, Journal of Biological Chemistry.

[12]  C. Czuprynski,et al.  Prior exposure to Mannheimia haemolytica leukotoxin or LPS enhances beta(2)-integrin expression by bovine neutrophils and augments LKT cytotoxicity. , 2003, Microbial pathogenesis.

[13]  P. Thumbikat,et al.  Biological effects of two genetically defined leukotoxin mutants of Mannheimia haemolytica. , 2003, Microbial pathogenesis.

[14]  M. Jacques,et al.  Identification of genes involved in biosynthesis of Actinobacillus pleuropneumoniae serotype 1 O-antigen and biological properties of rough mutants , 2002, Journal of endotoxin research.

[15]  P. Langford,et al.  Actinobacillus pleuropneumoniae: pathobiology and pathogenesis of infection. , 2002, Microbes and infection.

[16]  H. van den Bosch,et al.  Proposal of a new serovar of Actinobacillus pleuropneumoniae: serovar 15. , 2002, Veterinary microbiology.

[17]  C. Chae,et al.  Detection and Localization of ApxI, -II, and -III Genes of Actinobacillus pleuropneumoniae in Natural Porcine Pleuropneumonia by In Situ Hybridization , 2001 .

[18]  M. Abrahamsen,et al.  Lipopolysaccharide enhances cytolysis and inflammatory cytokine induction in bovine alveolar macrophages exposed to Pasteurella (Mannheimia) haemolytica leukotoxin. , 2001, Microbial pathogenesis.

[19]  M. Jacques,et al.  Actinobacillus pleuropneumoniae surface polysaccharides: their role in diagnosis and immunogenicity , 2000, Animal Health Research Reviews.

[20]  K. Diederichs,et al.  A conserved structural motif for lipopolysaccharide recognition by procaryotic and eucaryotic proteins. , 2000, Structure.

[21]  J. Harel,et al.  Isolation and characterization of a capsule-deficient mutant of Actinobacillus pleuropneumoniae serotype 1. , 2000, Microbial pathogenesis.

[22]  J. Harel,et al.  Isolation and characterization of mini-Tn10 lipopolysaccharide mutants of Actinobacillus pleuropneumoniae serotype 1. , 1999, Canadian journal of microbiology.

[23]  D. Myszka,et al.  Improving biosensor analysis , 1999, Journal of molecular recognition : JMR.

[24]  P. Kuhnert,et al.  Characterization of apxIVA, a new RTX determinant of Actinobacillus pleuropneumoniae. , 1999, Microbiology.

[25]  K. Clinkenbeard,et al.  Lipopolysaccharide Complexes with Pasteurella haemolytica Leukotoxin , 1999, Infection and Immunity.

[26]  V. Koronakis,et al.  Substrate‐induced assembly of a contiguous channel for protein export from E.coli: reversible bridging of an inner‐membrane translocase to an outer membrane exit pore , 1998, The EMBO journal.

[27]  T. Inzana,et al.  Cloning and Mutagenesis of a Serotype-Specific DNA Region Involved in Encapsulation and Virulence of Actinobacillus pleuropneumoniae Serotype 5a: Concomitant Expression of Serotype 5a and 1 Capsular Polysaccharides in Recombinant A. pleuropneumoniae Serotype 1 , 1998, Infection and Immunity.

[28]  F. Goñi,et al.  Reversible denaturation, self-aggregation, and membrane activity of Escherichia coli alpha-hemolysin, a protein stable in 6 M urea. , 1998, Biochemistry.

[29]  M. Jacques,et al.  Adhesin-receptor interactions in Pasteurellaceae. , 1998, FEMS microbiology reviews.

[30]  F. Goñi,et al.  Calcium-dependent conformation of E. coli alpha-haemolysin. Implications for the mechanism of membrane insertion and lysis. , 1998, Biochimica et biophysica acta.

[31]  Jian Fei Wang,et al.  RTX Toxins Recognize a β2 Integrin on the Surface of Human Target Cells* , 1997, The Journal of Biological Chemistry.

[32]  F. Haesebrouck,et al.  Actinobacillus pleuropneumoniae infections in pigs: the role of virulence factors in pathogenesis and protection. , 1997, Veterinary microbiology.

[33]  W. Seeger,et al.  Synergism between endotoxin priming and exotoxin challenge in provoking severe vascular leakage in rabbit lungs. , 1997, American journal of respiratory and critical care medicine.

[34]  F. Goñi,et al.  Balance of Electrostatic and Hydrophobic Interactions in the Lysis of Model Membranes by E. coliα-Haemolysin , 1997, The Journal of Membrane Biology.

[35]  R. Welch,et al.  Pleiotropic effects of a mutation in rfaC on Escherichia coli hemolysin , 1997, Infection and immunity.

[36]  R. Benz,et al.  Channel-forming activity and channel size of the RTX toxins ApxI, ApxII, and ApxIII of Actinobacillus pleuropneumoniae , 1996, Infection and immunity.

[37]  M. Jacques Role of lipo-oligosaccharides and lipopolysaccharides in bacterial adherence. , 1996, Trends in microbiology.

[38]  R. Welch,et al.  RfaH enhances elongation of Escherichia coli hlyCABD mRNA , 1996, Journal of bacteriology.

[39]  J. Nielsen,et al.  Comparison of virulence of different Actinobacillus pleuropneumoniae serotypes and biotypes using an aerosol infection model. , 1996, Veterinary microbiology.

[40]  F. Goñi,et al.  Interaction of the bacterial protein toxin α‐haemolysin with model membranes: protein binding does not always lead to lytic activity , 1995, FEBS letters.

[41]  J. Frey Virulence in Actinobacillus pleuropneumoniae and RTX toxins. , 1995, Trends in microbiology.

[42]  P. Stanley,et al.  Fatty acylation of two internal lysine residues required for the toxic activity of Escherichia coli hemolysin. , 1994, Science.

[43]  M. Smits,et al.  Genetic map of the Actinobacillus pleuropneumoniae RTX-toxin (Apx) operons: characterization of the ApxIII operons , 1994, Infection and immunity.

[44]  T. Inzana,et al.  Resistance of Actinobacillus pleuropneumoniae to bactericidal antibody and complement is mediated by capsular polysaccharide and blocking antibody specific for lipopolysaccharide. , 1994, Journal of immunology.

[45]  A. Haldimann,et al.  Sequence analysis and transcription of the apxI operon (hemolysin I) from Actinobacillus pleuropneumoniae. , 1994, Gene.

[46]  P. Díaz,et al.  Loss of activity in the secreted form of Escherichia coli haemolysin caused by an rfaP lesion in core lipopolysaccharide assembly , 1993, Molecular microbiology.

[47]  U. Baumann,et al.  Three‐dimensional structure of the alkaline protease of Pseudomonas aeruginosa: a two‐domain protein with a calcium binding parallel beta roll motif. , 1993, The EMBO journal.

[48]  F. Haesebrouck,et al.  Actinobacillus pleuropneumoniae RTX-toxins: uniform designation of haemolysins, cytolysins, pleurotoxin and their genes. , 1993, Journal of general microbiology.

[49]  S. Létoffé,et al.  Involvement of lipopolysaccharide in the secretion of Escherichia coli α haemolysin and Erwinia chrysanthemi proteases , 1993, Molecular microbiology.

[50]  M. J. Bailey,et al.  Escherichia coli HIyT protein, a transcriptional activator of haemolysin synthesis and secretion, is encoded by the rfaH (sfrB) locus required for expression of sex factor and lipopolysaccharide genes , 1992, Molecular microbiology.

[51]  M. Smits,et al.  Comparison of the cytolysin II genetic determinants of Actinobacillus pleuropneumoniae serotypes , 1992, Infection and immunity.

[52]  M. Smits,et al.  Identification of hemolytic and cytotoxic proteins of Actinobacillus pleuropneumoniae by use of monoclonal antibodies , 1991, Infection and immunity.

[53]  J. Nicolet,et al.  Nucleotide sequence of the hemolysin I gene from Actinobacillus pleuropneumoniae , 1991, Infection and immunity.

[54]  P. Jansson,et al.  Studies of the binding activity of phage G13 to synthetic trisaccharides analogous to binding structures in Salmonella typhimurium and Escherichia coli C core saccharide. Correlation between conformation and binding activity , 1991, Journal of molecular recognition : JMR.

[55]  J. Issartel,et al.  Activation of Escherichia coli prohaemolysin to the mature toxin by acyl carrier protein-dependent fatty acylation , 1991, Nature.

[56]  W. Goebel,et al.  Mutations affecting pore formation by haemolysin from Escherichia coli , 1991, Molecular and General Genetics MGG.

[57]  F. Goñi,et al.  α‐Haemolysin from E. coli purification and self‐aggregation properties , 1991, FEBS letters.

[58]  P. Jansson,et al.  The conformation of core oligosaccharides from Escherichia coli and Salmonella typhimurium lipopolysaccharides as predicted by semi‐empirical calculations , 1989, Journal of molecular recognition : JMR.

[59]  S. Bhakdi,et al.  Quantitative study of the binding and hemolytic efficiency of Escherichia coli hemolysin , 1989, Infection and immunity.

[60]  K. Sanderson,et al.  Gene rfaH, which affects lipopolysaccharide core structure in Salmonella typhimurium, is required also for expression of F-factor functions , 1981, Journal of bacteriology.

[61]  B. Seaton,et al.  Recognition of heptoses and the inner core of bacterial lipopolysaccharides by surfactant protein d. , 2008, Biochemistry.

[62]  S. Wai,et al.  Release of the type I secreted alpha-haemolysin via outer membrane vesicles from Escherichia coli. , 2006, Molecular microbiology.

[63]  L. Bakas,et al.  Role of lipopolysaccharide on the structure and function of alpha-hemolysin from Escherichia coli. , 2005, Chemistry and physics of lipids.

[64]  S. Camprubí,et al.  Influence of lipopolysaccharide on external hemolytic activity ofSalmonella typhimurium andKlebsiella pneumoniae , 2005, Current Microbiology.

[65]  C. Chae,et al.  Detection and localization of ApxI, -II and -III genes of Actinobacillus pleuropneumoniae in natural porcine pleuropneumonia in natural porcine pleuropneumonia by in situ hybridization. , 2001, Veterinary pathology.

[66]  M. Jacques,et al.  Evaluation of protective efficacy of an Actinobacillus pleuropneumoniae serotype 1 lipopolysaccharide-protein conjugate in mice. , 1997, Comparative immunology, microbiology and infectious diseases.

[67]  H. W. Jackeman Diseases of Swine. , 1940, Canadian journal of comparative medicine and veterinary science.