Pathophysiology of the brain extracellular matrix: a new target for remyelination

[1]  V. Belegu,et al.  Chondroitin sulfate proteoglycans inhibit oligodendrocyte myelination through PTPσ , 2013, Experimental Neurology.

[2]  T. Montine,et al.  Digestion products of the PH20 hyaluronidase inhibit remyelination , 2013, Annals of neurology.

[3]  Chao Zhao,et al.  Fibronectin aggregation in multiple sclerosis lesions impairs remyelination. , 2013, Brain : a journal of neurology.

[4]  B. Porter,et al.  The perineuronal net component of the extracellular matrix in plasticity and epilepsy , 2012, Neurochemistry International.

[5]  B. Trapp,et al.  Cortical remyelination: A new target for repair therapies in multiple sclerosis , 2012, Annals of neurology.

[6]  S. Takeda,et al.  Laminin regulates postnatal oligodendrocyte production by promoting oligodendrocyte progenitor survival in the subventricular zone , 2012, Glia.

[7]  M. Selzer,et al.  Scar-mediated inhibition and CSPG receptors in the CNS , 2012, Experimental Neurology.

[8]  Scott Sloka,et al.  Chondroitin sulfate proteoglycans in demyelinated lesions impair remyelination , 2012, Annals of neurology.

[9]  D. Vocadlo,et al.  Developing inhibitors of glycan processing enzymes as tools for enabling glycobiology. , 2012, Nature chemical biology.

[10]  M. Fehlings,et al.  Chondroitinase and Growth Factors Enhance Activation and Oligodendrocyte Differentiation of Endogenous Neural Precursor Cells after Spinal Cord Injury , 2012, PloS one.

[11]  L. Hsieh‐Wilson,et al.  A sulfated carbohydrate epitope inhibits axon regeneration after injury , 2012, Proceedings of the National Academy of Sciences.

[12]  H. M. Geller,et al.  NgR1 and NgR3 are Receptors for Chondroitin Sulfate Proteoglycans , 2012, Nature Neuroscience.

[13]  田内 亮吏 The endogenous proteoglycan-degrading enzyme ADAMTS-4 promotes functional recovery after spinal cord injury , 2012 .

[14]  R. Shinjo,et al.  The endogenous proteoglycan-degrading enzyme ADAMTS-4 promotes functional recovery after spinal cord injury , 2012, Journal of Neuroinflammation.

[15]  V. Yong,et al.  Reduced inflammation accompanies diminished myelin damage and repair in the NG2 null mouse spinal cord , 2011, Journal of Neuroinflammation.

[16]  J. Fawcett,et al.  Extracellular matrix and perineuronal nets in CNS repair , 2011, Developmental neurobiology.

[17]  M. Sheng,et al.  Leukocyte Common Antigen-Related Phosphatase Is a Functional Receptor for Chondroitin Sulfate Proteoglycan Axon Growth Inhibitors , 2011, The Journal of Neuroscience.

[18]  D. Osterhout,et al.  The inhibitory effects of chondroitin sulfate proteoglycans on oligodendrocytes , 2011, Journal of neurochemistry.

[19]  D. Stelzner,et al.  Chondroitinase treatment following spinal contusion injury increases migration of oligodendrocyte progenitor cells , 2011, Experimental Neurology.

[20]  J. Fawcett,et al.  6-Sulphated Chondroitins Have a Positive Influence on Axonal Regeneration , 2011, PloS one.

[21]  R. Bellamkonda,et al.  Targeted downregulation of N‐acetylgalactosamine 4‐sulfate 6‐O‐sulfotransferase significantly mitigates chondroitin sulfate proteoglycan‐mediated inhibition , 2011, Glia.

[22]  J. Fawcett,et al.  Integrin Activation Promotes Axon Growth on Inhibitory Chondroitin Sulfate Proteoglycans by Enhancing Integrin Signaling , 2011, The Journal of Neuroscience.

[23]  M. Sofroniew,et al.  Reactive astrocytes as therapeutic targets for CNS disorders , 2010, Neurotherapeutics.

[24]  A. Minagar Extracellular Matrix in Multiple Sclerosis Lesions: Fibrillar Collagens, Biglycan and Decorin are Upregulated and Associated with Infiltrating Immune Cells , 2011 .

[25]  L. Sorokin The impact of the extracellular matrix on inflammation , 2010, Nature Reviews Immunology.

[26]  J. Newcombe,et al.  Extracellular Matrix in Multiple Sclerosis Lesions: Fibrillar Collagens, Biglycan and Decorin are Upregulated and Associated with Infiltrating Immune Cells , 2010, Brain pathology.

[27]  L. Vargova,et al.  Bral1: Its Role in Diffusion Barrier Formation and Conduction Velocity in the CNS , 2010, The Journal of Neuroscience.

[28]  C. Overall,et al.  Matrix metalloproteinases: what do they not do? New substrates and biological roles identified by murine models and proteomics. , 2010, Biochimica et biophysica acta.

[29]  K. Horn,et al.  PTPσ Is a Receptor for Chondroitin Sulfate Proteoglycan, an Inhibitor of Neural Regeneration , 2009, Science.

[30]  V. Yong,et al.  Fibronectin attenuates process outgrowth in oligodendrocytes by mislocalizing MMP-9 activity , 2009, Molecular and Cellular Neuroscience.

[31]  M. Simons,et al.  Actomyosin contractility controls cell surface area of oligodendrocytes , 2009, BMC Cell Biology.

[32]  S. Apte A Disintegrin-like and Metalloprotease (Reprolysin-type) with Thrombospondin Type 1 Motif (ADAMTS) Superfamily: Functions and Mechanisms* , 2009, The Journal of Biological Chemistry.

[33]  Wan-Wan Lin,et al.  Carcinoma-produced factors activate myeloid cells through TLR2 to stimulate metastasis , 2009, Nature.

[34]  S. Love,et al.  Elevated Matrix Metalloproteinase-9 and Degradation of Perineuronal Nets in Cerebrocortical Multiple Sclerosis Plaques , 2008, Journal of neuropathology and experimental neurology.

[35]  Michal Schwartz,et al.  America , 2012 .

[36]  C. Wegner,et al.  Differentiation block of oligodendroglial progenitor cells as a cause for remyelination failure in chronic multiple sclerosis. , 2008, Brain : a journal of neurology.

[37]  J. Silver,et al.  CNS injury, glial scars, and inflammation: Inhibitory extracellular matrices and regeneration failure , 2008, Experimental Neurology.

[38]  S. Back,et al.  A ‘GAG’ reflex prevents repair of the damaged CNS , 2008, Trends in Neurosciences.

[39]  H. M. Geller,et al.  Inhibiting Glycosaminoglycan Chain Polymerization Decreases the Inhibitory Activity of Astrocyte-Derived Chondroitin Sulfate Proteoglycans , 2007, The Journal of Neuroscience.

[40]  Helga E de Vries,et al.  The extracellular matrix in multiple sclerosis pathology , 2007, Journal of neurochemistry.

[41]  A. Shuaib,et al.  Critical role of microvasculature basal lamina in ischemic brain injury , 2007, Progress in Neurobiology.

[42]  T. Mikami,et al.  Chondroitin/dermatan sulfate in the central nervous system. , 2007, Current opinion in structural biology.

[43]  U. Rauch Brain matrix: structure, turnover and necessity. , 2007, Biochemical Society transactions.

[44]  James W. Fawcett,et al.  The role of chondroitin sulfate proteoglycans in regeneration and plasticity in the central nervous system , 2007, Brain Research Reviews.

[45]  M. Pizzi,et al.  Transplantation of fibroblasts that overexpress matrix metalloproteinase-3 into the site of spinal cord injury in rats. , 2006, Journal of neurotrauma.

[46]  L. Bö,et al.  Extensive extracellular matrix depositions in active multiple sclerosis lesions , 2006, Neurobiology of Disease.

[47]  D. Hoekstra,et al.  Fibronectin impedes “myelin” sheet-directed flow in oligodendrocytes: A role for a beta 1 integrin-mediated PKC signaling pathway in vesicular trafficking , 2006, Molecular and Cellular Neuroscience.

[48]  Z. Werb,et al.  Matrix Metalloproteinase-2 Facilitates Wound Healing Events That Promote Functional Recovery after Spinal Cord Injury , 2006, The Journal of Neuroscience.

[49]  Zhigang He,et al.  Glial inhibition of CNS axon regeneration , 2006, Nature Reviews Neuroscience.

[50]  V. Yong,et al.  Metalloproteinases: Mediators of Pathology and Regeneration in the CNS , 2005, Nature Reviews Neuroscience.

[51]  Zhigang He,et al.  EGFR Activation Mediates Inhibition of Axon Regeneration by Myelin and Chondroitin Sulfate Proteoglycans , 2005, Science.

[52]  C. ffrench-Constant,et al.  Human diseases reveal novel roles for neural laminins , 2005, Trends in Neurosciences.

[53]  Mahendra S Rao,et al.  Hyaluronan accumulates in demyelinated lesions and inhibits oligodendrocyte progenitor maturation , 2005, Nature Medicine.

[54]  Ravi V. Bellamkonda,et al.  CS-4,6 is differentially upregulated in glial scar and is a potent inhibitor of neurite extension , 2005, Molecular and Cellular Neuroscience.

[55]  Daniel J Brat,et al.  Microregional extracellular matrix heterogeneity in brain modulates glioma cell invasion. , 2004, The international journal of biochemistry & cell biology.

[56]  Barbara Grimpe,et al.  A Novel DNA Enzyme Reduces Glycosaminoglycan Chains in the Glial Scar and Allows Microtransplanted Dorsal Root Ganglia Axons to Regenerate beyond Lesions in the Spinal Cord , 2004, The Journal of Neuroscience.

[57]  Jerry Silver,et al.  Regeneration beyond the glial scar , 2004, Nature Reviews Neuroscience.

[58]  A. Bignami,et al.  Hyaluronic acid and hyaluronic acid-binding proteins in brain extracellular matrix , 1993, Anatomy and Embryology.

[59]  G. Opdenakker,et al.  Matrix Metalloproteinase-9 Facilitates Remyelination in Part by Processing the Inhibitory NG2 Proteoglycan , 2003, The Journal of Neuroscience.

[60]  R. Sidman,et al.  Integrin-linked kinase is required for laminin-2–induced oligodendrocyte cell spreading and CNS myelination , 2003, The Journal of cell biology.

[61]  B. Engelhardt Development of the blood-brain barrier , 2003, Cell and Tissue Research.

[62]  M. Tuszynski,et al.  The chondroitin sulfate proteoglycans neurocan, brevican, phosphacan, and versican are differentially regulated following spinal cord injury , 2003, Experimental Neurology.

[63]  M. Schachner,et al.  Extracellular matrix molecules and synaptic plasticity , 2003, Nature Reviews Neuroscience.

[64]  Masahiko Watanabe,et al.  Differentiation of proliferated NG2‐positive glial progenitor cells in a remyelinating lesion , 2002, Journal of neuroscience research.

[65]  E. Heber-Katz,et al.  Recovery from spinal cord injury: A new transection model in the C57Bl/6 mouse , 2002, Journal of neuroscience research.

[66]  R. An Chondroitinase ABC promotes functional recovery after spinal cord injury , 2002 .

[67]  R. Sobel,et al.  White Matter Extracellular Matrix Chondroitin Sulfate/Dermatan Sulfate Proteoglycans in Multiple Sclerosis , 2001, Journal of neuropathology and experimental neurology.

[68]  H. Ichijo,et al.  Roles of the Telencephalic Cells and their Chondroitin Sulfate Proteoglycans in Delimiting an Anterior Border of the Retinal Pathway , 2001, The Journal of Neuroscience.

[69]  Z. Werb,et al.  How matrix metalloproteinases regulate cell behavior. , 2001, Annual review of cell and developmental biology.

[70]  P. Yurchenco,et al.  Form and function: The laminin family of heterotrimers , 2000, Developmental dynamics : an official publication of the American Association of Anatomists.

[71]  C. Bandtlow,et al.  Proteoglycans in the developing brain: new conceptual insights for old proteins. , 2000, Physiological reviews.

[72]  R. Emeson,et al.  Functions and mechanisms of RNA editing. , 2000, Annual review of genetics.

[73]  D. Snow,et al.  Embryonic Neurons Adapt to the Inhibitory Proteoglycan Aggrecan by Increasing Integrin Expression , 1999, The Journal of Neuroscience.

[74]  C. ffrench-Constant,et al.  Laminin-2/Integrin Interactions Enhance Myelin Membrane Formation by Oligodendrocytes , 1999, Molecular and Cellular Neuroscience.

[75]  T. Ferguson,et al.  Neuronal Matrix Metalloproteinase-2 Degrades and Inactivates a Neurite-Inhibiting Chondroitin Sulfate Proteoglycan , 1998, The Journal of Neuroscience.

[76]  K. Fukuchi,et al.  Alzheimer's disease and heparan sulfate proteoglycan. , 1998, Frontiers in bioscience : a journal and virtual library.

[77]  Voon Wee Yong,et al.  Matrix metalloproteinases and diseases of the CNS , 1998, Trends in Neurosciences.

[78]  C. ffrench-Constant,et al.  Expression of αvβ3 and αvβ8 integrins during oligodendrocyte precursor differentiation in the presence and absence of axons , 1997, Glia.

[79]  D. Snow,et al.  GROWTH CONE BEHAVIOR IN THE PRESENCE OF SOLUBLE CHONDROITIN SULFATE PROTEOGLYCAN (CSPG), COMPARED TO BEHAVIOR ON CSPG BOUND TO LAMININ OR FIBRONECTIN , 1996, International Journal of Developmental Neuroscience.

[80]  P. Maurel,et al.  Chondroitin sulfate proteoglycans in the developing central nervous system. I. Cellular sites of synthesis of neurocan and phosphacan , 1996, The Journal of comparative neurology.

[81]  C. Chauzy,et al.  Expression and Effects of Hyaluronan and of the Hyaluronan‐Binding Protein Hyaluronectin in Newborn Rat Brain Glial Cell Cultures , 1994, Journal of neurochemistry.

[82]  J. Silver,et al.  Reduction of neurite outgrowth in a model of glial scarring following CNS injury is correlated with the expression of inhibitory molecules on reactive astrocytes , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[83]  B. Cragg,et al.  Brain extracellular space fixed for electron microscopy , 1979, Neuroscience Letters.