Paleoproterozoic accretion and assembly of the Western Block of North China: A new model

[1]  H. Zhou,et al.  Petrogenesis and tectonic setting of Neoarchean tonalitic-trondhjemitic-granodioritic gneisses in the Xiwulanbulang area of the Yinshan block, North China craton , 2023, GSA Bulletin.

[2]  Tongjun Liu,et al.  Deformation characteristics of the high-grade metamorphic and anatectic rocks in the Daqingshan Paleoproterozoic orogenic belt, Inner Mongolia: A case study from the Shijiaqu-Xuehaigou area , 2022, Precambrian Research.

[3]  Jian Zhang,et al.  Paleoproterozoic tectonic evolution from subduction to collision of the Khondalite Belt in North China: Evidence from multiple magmatism in the Qianlishan Complex , 2022, Precambrian Research.

[4]  W. Xiao,et al.  Paleoproterozoic polyphase deformation in the Helanshan Complex: Structural and geochronological constraints on the tectonic evolution of the Khondalite Belt, North China Craton , 2022, Precambrian Research.

[5]  Jian Zhang,et al.  Petrogenesis and tectonic implications of TTG granitoids from the Daqingshan Complex of the Khondalite Belt, North China Craton , 2021, American Journal of Science.

[6]  Jian Zhang,et al.  New Discovery of ∼1866 Ma High‐temperature Mylonite in the Helanshan Complex: Marking a Late‐stage Ductile Shearing in the Khondalite Belt, North China Craton , 2021, Acta Geologica Sinica - English Edition.

[7]  Xu-Ping Li,et al.  An early high-pressure history preceeded pelitic ultrahigh-temperature granulite formation in the Tuguiwula area, Khondalite Belt, North China Craton , 2021 .

[8]  Zhang Chengli,et al.  New thinking and understanding for the researches on the basement of Ordos Block , 2021 .

[9]  Jian Zhang,et al.  Deformation history of the Qianlishan Complex, Khondalite Belt, North China: Structures, ages and tectonic implications , 2020 .

[10]  D. Davis,et al.  Metamorphic evolution of high-pressure felsic and pelitic granulites from the Qianlishan Complex and tectonic implications for the Khondalite Belt, North China Craton , 2020 .

[11]  N. Evans,et al.  Texturally Controlled U–Th–Pb Monazite Geochronology Reveals Paleoproterozoic UHT Metamorphic Evolution in the Khondalite Belt, North China Craton , 2020 .

[12]  B. Wan,et al.  Seismological evidence for the earliest global subduction network at 2 Ga ago , 2020, Science Advances.

[13]  Jian Zhang,et al.  Tectonic evolution of the Alxa Block and its affinity: Evidence from the U-Pb geochronology and Lu-Hf isotopes of detrital zircons from the Longshoushan Belt , 2020 .

[14]  Peng Liu,et al.  The timing and duration of high-temperature to ultrahigh-temperature metamorphism constrained by zircon U–Pb–Hf and trace element signatures in the Khondalite Belt, North China Craton , 2020, Contributions to Mineralogy and Petrology.

[15]  Lei Zhao,et al.  Continental crustal evolution and synchronous metallogeny through time in the North China Craton , 2020 .

[16]  Jian Zhang,et al.  Geochemistry, geochronology and evolution of Paleoproterozoic granitoid gneisses in the Khondalite Belt, North China Craton , 2020 .

[17]  Jing-hui Guo,et al.  Paleoproterozoic UHT metamorphism with isobaric cooling (IBC) followed by decompression–heating in the Khondalite Belt (North China Craton): New evidence from two sapphirine formation processes , 2020, Journal of Metamorphic Geology.

[18]  L. Yongjiang,et al.  Rheology of the anatectic mid-lower crust in the Paleoproterozoic orogenic belt in Daqingshan, Inner Mongolia , 2020 .

[19]  R. Palin,et al.  What Drives the Continental Crust To Be Extremely Hot So Quickly? , 2019, Journal of Geophysical Research: Solid Earth.

[20]  C. Spencer,et al.  High-temperature S-type granitoids (charnockites) in the Jining complex, North China Craton: Restite entrainment and hybridization with mafic magma , 2018, Lithos.

[21]  Zuozhen Han,et al.  Zircon ages and geochemistry of amphibolitic rocks from the Paleoproterozoic Erdaowa Group in the Khondalite Belt, North China Craton and their tectonic implications , 2018, Precambrian Research.

[22]  Yunpeng Dong,et al.  Ultrahigh‐temperature metamorphism in the Helanshan complex of the Khondalite Belt, North China Craton: Petrology and phase equilibria of spinel‐bearing pelitic granulites , 2018, Journal of Metamorphic Geology.

[23]  Yunpeng Dong,et al.  Phase equilibrium modelling and SHRIMP zircon U–Pb dating of medium-pressure pelitic granulites in the Helanshan complex of the Khondalite Belt, North China Craton, and their tectonic implications , 2018, Precambrian Research.

[24]  C. Wei,et al.  Ultrahigh‐temperature metamorphism in the Tuguiwula area, Khondalite Belt, North China Craton , 2018 .

[25]  Wei Lin,et al.  Ultra‐high temperature metamorphism recorded in Fe‐rich olivine‐bearing migmatite from the Khondalite Belt, North China Craton , 2018 .

[26]  Jian-Hui Liu,et al.  Spatial distribution, P–T–t paths, and tectonic significance of high-pressure mafic granulites from the Daqingshan–Wulashan Complex in the Khondalite Belt, North China Craton , 2017 .

[27]  A. Schmitt,et al.  Petrogenesis and thermal overprint of S-type granites in Helanshan region, North China Craton: Constraints on the 1.90 Ga khondalites decompression melting and 1.32 Ga tectono-thermal event , 2017 .

[28]  C. Yin,et al.  Petrogenesis of ca. 1.95 Ga meta-leucogranites from the Jining Complex in the Khondalite Belt, North China Craton: Water-fluxed melting of metasedimentary rocks , 2017 .

[29]  H. Zhou,et al.  U-Pb zircon ages and Hf isotopes of ∼2.5 Ga granitoids from the Yinshan Block, North China Craton: Implications for crustal growth , 2017 .

[30]  X. Long,et al.  Archean to Paleoproterozoic continental crust growth in the Western Block of North China: Constraints from zircon Hf isotopic and whole-rock Nd isotopic data , 2017 .

[31]  F. Wang,et al.  Anatectic record and P–T path evolution of metapelites from the Wulashan Complex, Khondalite Belt, North China Craton , 2017 .

[32]  Yue Zhao,et al.  Prolonged anatexis of Paleoproterozoic metasedimentary basement: First evidence from the Yinchuan Basin and new constraints on the evolution of the Khondalite Belt, North China Craton , 2017 .

[33]  Jian Zhang,et al.  Paleoproterozoic S-type granites from the Helanshan Complex in Inner Mongolia: Constraints on the provenance and the Paleoproterozoic evolution of the Khondalite Belt, North China Craton , 2017 .

[34]  Fulai Liu,et al.  Paleoproterozoic multistage metamorphic events in Jining metapelitic rocks from the Khondalite Belt in the North China Craton: Evidence from petrology, phase equilibria modelling and U–Pb geochronology , 2017 .

[35]  I. Fitzsimons,et al.  Paleoproterozoic UHT metamorphism in the Daqingshan Terrane, North China Craton: New constraints from phase equilibria modeling and SIMS U–Pb zircon dating , 2017 .

[36]  C. Wei,et al.  Phase equilibria modelling and zircon age dating of pelitic granulites in Zhaojiayao, from the Jining Group of the Khondalite Belt, North China Craton , 2016 .

[37]  P. Piccoli,et al.  P–T–t evolution of pelitic gneiss from the basement underlying the Northwestern Ordos Basin, North China Craton, and the tectonic implications , 2016 .

[38]  C. Yin,et al.  Application of the revised Ti-in-zircon thermometer and SIMS zircon U-Pb dating of high-pressure pelitic granulites from the Qianlishan-Helanshan Complex of the Khondalite Belt, North China Craton , 2016 .

[39]  Guochun Zhao,et al.  High-pressure pelitic granulites from the Helanshan Complex in the Khondalite Belt, North China Craton: Metamorphic P-t path and tectonic implications , 2015, American Journal of Science.

[40]  Jinglan Luo,et al.  Archean-Paleoproterozoic crustal evolution of the Ordos Block in the North China Craton: Constraints from zircon U–Pb geochronology and Hf isotopes for gneissic granitoids of the basement , 2015 .

[41]  F. Wang,et al.  Silica-undersaturated spinel granulites in the Daqingshan complex of the Khondalite Belt, North China Craton: Petrology and quantitative P–T–X constraints , 2015 .

[42]  M. Santosh,et al.  Paleoproterozoic arc magmatism in the North China Craton: No Siderian global plate tectonic shutdown , 2015 .

[43]  B. Windley,et al.  Lithological units at the boundary zone between the Jining and Huai'an Complexes (central-northern margin of the North China Craton): A Paleoproterozoic tectonic mélange? , 2015 .

[44]  Zhenhong Li,et al.  Possible southwestward extrusion of the Ordos Block in the Late Paleoproterozoic: Constraints from kinematic and geochronologic analysis of peripheral ductile shear zones , 2014 .

[45]  M. Santosh,et al.  Ultrahigh-temperature metamorphism under isobaric heating: New evidence from the North China Craton , 2014 .

[46]  D. Wyman,et al.  Paleoproterozoic S-type granites in the Helanshan Complex, Khondalite Belt, North China Craton: Implications for rapid sediment recycling during slab break-off , 2014 .

[47]  Zhenhong Li,et al.  Late Paleoproterozoic medium-P high grade metamorphism of basement rocks beneath the northern margin of the Ordos Basin, NW China: Petrology, phase equilibrium modelling and U–Pb geochronology , 2014 .

[48]  Jian-Hui Liu,et al.  Multiple mafic magmatic and high-grade metamorphic events revealed by zircons from meta-mafic rocks in the Daqingshan–Wulashan Complex of the Khondalite Belt, North China Craton , 2014 .

[49]  C. Yin,et al.  Metamorphism and partial melting of high-pressure pelitic granulites from the Qianlishan Complex: Constraints on the tectonic evolution of the Khondalite Belt in the North China Craton , 2014 .

[50]  Fang Wang,et al.  Metamorphic P-T path and tectonic implications of pelitic granulites from the Daqingshan Complex of the Khondalite Belt, North China Craton , 2014 .

[51]  Tao Wang,et al.  Reassessment of continental growth during the accretionary history of the Central Asian Orogenic Belt , 2014 .

[52]  Jing-hui Guo,et al.  Geochronology and trace element geochemistry of zircon, monazite and garnet from the garnetite and/or associated other high-grade rocks: Implications for Palaeoproterozoic tectonothermal evolution of the Khondalite Belt, North China Craton , 2013 .

[53]  Xudong Ma,et al.  Geochemistry and zircon U–Pb chronology of charnockites in the Yinshan Block, North China Craton: tectonic evolution involving Neoarchaean ridge subduction , 2013 .

[54]  Dunyi Liu,et al.  Palaeoproterozoic episodic magmatism and high‐grade metamorphism in the North China Craton: evidence from SHRIMP zircon dating of magmatic suites in the Daqingshan area , 2013 .

[55]  B. Windley,et al.  New Constraints from Garnetite on the P–T Path of the Khondalite Belt: Implications for the Tectonic Evolution of the North China Craton , 2013 .

[56]  Dunyi Liu,et al.  Is the Ordos Block Archean or Paleoproterozoic in age? Implications for the Precambrian evolution of the North China Craton , 2013, American Journal of Science.

[57]  Q. Qian,et al.  Zircon U-Pb ages, trace elements and Nd-Hf isotopic geochemistry of Guyang sanukitoids and related rocks: Implications for the Archean crustal evolution of the Yinshan Block, North China Craton , 2013 .

[58]  L. Ping Geochronological and geochemical study of the Lijiazi mafic granulites from the Daqingshan-Wulashan metamorphic complex, the central Khondalite Belt in the North China Craton. , 2013 .

[59]  Liquan Zheng Geochemistry and zircon U-Pb age of the Paleoproterozoic syn-collisional granites in Helanshan region and its geological significance , 2013 .

[60]  H. Xiong Structural deformation characteristics of the Paleoproterozoic crystaline basement in the northern segment of Helan Mountain and its regional tectonic implications , 2013 .

[61]  Zhenhong Li,et al.  SHRIMP U-Pb zircon dating of the Ordos Basin basement and its tectonic significance , 2013 .

[62]  Dunyi Liu,et al.  Episodic Paleoproterozoic (~2.45, ~1.95 and ~1.85 Ga) mafic magmatism and associated high temperature metamorphism in the Daqingshan area, North China Craton: SHRIMP zircon U-Pb dating and whole-rock geochemistry , 2013 .

[63]  Xian‐Hua Li,et al.  Integrated in situ zircon U–Pb age and Hf–O isotopes for the Helanshan khondalites in North China Craton: Juvenile crustal materials deposited in active or passive continental margin? , 2012 .

[64]  Q. Zhang,et al.  Episodic mantle melting-crustal reworking in the late Neoarchean of the northwestern North China Craton: Zircon ages of magmatic and metamorphic rocks from the Yinshan Block , 2012 .

[65]  B. Windley,et al.  UHT sapphirine granulite metamorphism at 1.93–1.92 Ga caused by gabbronorite intrusions: Implications for tectonic evolution of the northern margin of the North China Craton , 2012 .

[66]  M. Santosh,et al.  Paleoproterozoic ultrahigh-temperature granulites in the North China Craton: Implications for tectonic models on extreme crustal metamorphism , 2012 .

[67]  B. Windley,et al.  Petrogenesis of Late Paleoproterozoic Liangcheng charnockites and S-type granites in the central-northern margin of the North China Craton: Implications for ridge subduction , 2012 .

[68]  Peter A. Cawood,et al.  Amalgamation of the North China Craton: Key issues and discussion , 2012 .

[69]  Peter A. Cawood,et al.  Detrital zircon record and tectonic setting , 2012 .

[70]  M. Santosh,et al.  Spinel + quartz-bearing ultrahigh-temperature granulites from Xumayao, Inner Mongolia Suture Zone, North China Craton: Petrology, phase equilibria and counterclockwise p-T path , 2012 .

[71]  M. Santosh,et al.  Paleoproterozoic granulites from Heling'er: Implications for regional ultrahigh-temperature metamorphism in the North China Craton , 2012 .

[72]  Sheng‐yao Yu,et al.  Ca. 2.5 Ga TTG rocks in the western Alxa Block and their implications , 2012 .

[73]  P. Vermeesch On the visualisation of detrital age distributions , 2012 .

[74]  Z. Lian Formation age,geochemical signatures and geological significance of the Sanheming BIF-type iron deposit in the Guyang greenstone belt,Inner Mongolia , 2012 .

[75]  Dunyi Liu,et al.  SHRIMP zircon U-Pb dating of late Paleoproterozoic kondalites in the Daqing Mountains area on the North China Craton , 2012, Science China Earth Sciences.

[76]  Xu-Ping Li,et al.  Geochronology of khondalite-series rocks of the Jining Complex: confirmation of depositional age and tectonometamorphic evolution of the North China craton , 2011 .

[77]  Q. Mao,et al.  Application of Zr-in-rutile thermometry: a case study from ultrahigh-temperature granulites of the Khondalite belt, North China Craton , 2011 .

[78]  M. Brown,et al.  When the Continental Crust Melts , 2011 .

[79]  M. Santosh,et al.  The early Precambrian odyssey of the North China Craton: A synoptic overview , 2011 .

[80]  M. Santosh,et al.  Ultrahigh-temperature metamorphism in Daqingshan, Inner Mongolia Suture Zone, North China Craton , 2011 .

[81]  B. Windley,et al.  Halaqin volcano-sedimentary succession in the central-northern margin of the North China Craton: Products of Late Paleoproterozoic ridge subduction , 2011 .

[82]  Guochun Zhao,et al.  U–Pb and Hf isotopic study of zircons of the Helanshan Complex: Constrains on the evolution of the Khondalite Belt in the Western Block of the North China Craton , 2011 .

[83]  W. Bleeker,et al.  Paleoproterozoic gabbronoritic and granitic magmatism in the northern margin of the North China craton: Evidence of crust–mantle interaction , 2010 .

[84]  Xudong Ma,et al.  Re-Os isotopic constraint to the age of in komatiites in the Neoarchean Guyang greenstone belt, North China Craton , 2010 .

[85]  Peter A. Cawood,et al.  Single zircon grains record two Paleoproterozoic collisional events in the North China Craton , 2010 .

[86]  T. Kusky,et al.  Origin of paired high pressure–ultrahigh‐temperature orogens: a ridge subduction and slab window model , 2010 .

[87]  Geng Yuan Late Neoarchean to Early Paleoproterozoic magmatic events and tectonothermal systems in the North China Craton , 2010 .

[88]  Songlin Xin Original rocks,ages,and its significance for the wall rock of Niutougou gold deposit in northern Helan Mountains , 2010 .

[89]  Guochun Zhao,et al.  Helanshan high-pressure pelitic granulites: petrological evidence for collision event in the Western Block of the North China Craton , 2010 .

[90]  Guochun Zhao,et al.  LA-ICP-MS U-Pb zircon ages of the Qianlishan Complex: Constrains on the evolution of the Khondalite Belt in the Western Block of the North China Craton , 2009 .

[91]  Dunyi Liu,et al.  Anatomy of Zircons from an Ultrahot Orogen: The Amalgamation of the North China Craton within the Supercontinent Columbia , 2009, The Journal of Geology.

[92]  M. Santosh,et al.  Counterclockwise exhumation of a hot orogen: The Paleoproterozoic ultrahigh-temperature granulites in the North China Craton , 2009 .

[93]  Zhou Xi Metamorphic age of the khondalite series in the Helanshan region: Constraints on the evolution of the western block in the North China Craton. , 2009 .

[94]  Li Jiang-hai Paleoproterozoic High Temperature Paired Metamorphic Belt in Central Parto f Southern Inner Mongolia and Its Tectonic Implication , 2009 .

[95]  Yue-heng Yang,et al.  The Precambrian Khondalite Belt in the Daqingshan area, North China Craton: evidence for multiple metamorphic events in the Palaeoproterozoic era , 2009 .

[96]  J. Mahoney,et al.  Geochemistry of the Volcan de l'Androy Basalt^Rhyolite Complex, Madagascar Cretaceous Igneous Province , 2008 .

[97]  Guochun Zhao,et al.  Paleoproterozoic crustal growth in the Western Block of the North China Craton: Evidence from detrital zircon Hf and whole rock Sr-nd isotopic compositions of the Khondalites from the Jining Complex , 2008, American Journal of Science.

[98]  Dunyi Liu,et al.  Paleoproterozoic crustally derived carbonate-rich magmatic rocks from the Daqinshan area, North China Craton: Geological, petrographical, geochronological and geochemical (Hf, Nd, O and C) evidence , 2008, American Journal of Science.

[99]  S. Wilde,et al.  Timing of Paleoproterozoic ultrahigh-temperature metamorphism in the North China Craton: Evidence from SHRIMP U–Pb zircon geochronology , 2007 .

[100]  Zhou Hongying,et al.  Palaeoproterozoic Khondalite Belt in the western North China Craton: New evidence from SHRIMP dating and Hf isotope composition of zircons from metamorphic rocks in the Bayan Ul-Helan Mountains area , 2007 .

[101]  M. Santosh,et al.  Discovery of sapphirine-bearing Mg–Al granulites in the North China Craton: Implications for Paleoproterozoic ultrahigh temperature metamorphism , 2007 .

[102]  M. Brown,et al.  Metamorphic Conditions in Orogenic Belts: A Record of Secular Change , 2007 .

[103]  Yang Zhensheng,et al.  Structure of metamorphic strata of the khondalite series in the Daqingshan-Wulashan area, central Inner Mongolia, China, and their geodynamic implications , 2007 .

[104]  Zhong Chang-ting Magma recording of Paleoproterozoic orogeny in central segment of northern margin of North China Craton:Geochemical characteristics and zircon SHRIMP dating of S-type granitoids , 2007 .

[105]  Z. Ming Paleoproterozoic events in the North China Craton. , 2007 .

[106]  M. Santosh,et al.  Extreme crustal metamorphism during Columbia supercontinent assembly: Evidence from North China Craton , 2006 .

[107]  Dunyi Liu,et al.  SHRIMP U–Pb zircon geochronology of Palaeoproterozoic metasedimentary rocks in the North China Craton: Evidence for a major Late Palaeoproterozoic tectonothermal event , 2006 .

[108]  Guochun Zhao,et al.  LA-ICP-MS U–Pb geochronology of detrital zircons from the Jining Complex, North China Craton and its tectonic significance , 2006 .

[109]  Guochun Zhao,et al.  U-Pb and Hf isotopic study of detrital zircons from the Wulashan khondalites: Constraints on the evolution of the Ordos Terrane, Western Block of the North China Craton , 2006 .

[110]  S. Wilde,et al.  Late Archean to Paleoproterozoic evolution of the North China Craton: key issues revisited , 2005 .

[111]  Liu Zheng-hong STRUCTURES OF EARLY METAMORPHIC STRATA IN THE KHONDALITE SERIES IN THE DAQINGSHAN—WULASHAN AREA, INNER MONGOLIA: RESULTS OF THE SUB-HORIZONTAL BEDDING-PARALLEL DETACHMENT DEFORMATION IN THE LOWER CRUST , 2005 .

[112]  D. Champion,et al.  An overview of adakite, tonalite–trondhjemite–granodiorite (TTG), and sanukitoid: relationships and some implications for crustal evolution , 2005 .

[113]  D. Champion,et al.  Formation of Earth’s early Archaean continental crust , 2003 .

[114]  P. O'Brien,et al.  High‐pressure granulites: formation, recovery of peak conditions and implications for tectonics , 2003 .

[115]  K. Mezger,et al.  Calibration of the Lutetium-Hafnium Clock , 2001, Science.

[116]  D. Champion,et al.  The Archaean High-Mg Diorite Suite: Links to Tonalite–Trondhjemite–Granodiorite Magmatism and Implications for Early Archaean Crustal Growth , 2000 .

[117]  Peter A. Cawood,et al.  Tectonothermal history of the basement rocks in the western zone of the North China Craton and its tectonic implications , 1999 .

[118]  Qian Xianglin,et al.  Discovery of Neoarchean unconformity and its implication for continental cratonization of North China craton , 1999 .

[119]  B. Barbarin A review of the relationships between granitoid types, their origins and their geodynamic environments , 1999 .

[120]  P. Sylvester Post-collisional strongly peraluminous granites , 1998 .

[121]  F. Albarède,et al.  The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system , 1997 .

[122]  H. Seck,et al.  Partial fusion of basic granulites at 5 to 15 kbar: implications for the origin of TTG magmas , 1997 .

[123]  E. Watson,et al.  Dehydration melting of metabasalt at 8-32 kbar : Implications for continental growth and crust-mantle recycling , 1995 .

[124]  J. Shiqin,et al.  P–T–t paths and tectonic history of an early Precambrian granulite facies terrane, Jining district, south‐east Inner Mongolia, China , 1993 .

[125]  Jinzhong Liu,et al.  The origin of khondalites: geochemical evidence from the Archean to Early Proterozoic granulite belt in the North China craton , 1992 .

[126]  S. Harley The origins of granulites: a metamorphic perspective , 1989, Geological Magazine.

[127]  P. England,et al.  Pressure—Temperature—Time Paths of Regional Metamorphism II. Their Inference and Interpretation using Mineral Assemblages in Metamorphic Rocks , 1984 .

[128]  Alan Bruce Thompson,et al.  Pressure—Temperature—Time Paths of Regional Metamorphism I. Heat Transfer during the Evolution of Regions of Thickened Continental Crust , 1984 .