Enhanced Mechanical Properties of Aliphatic Polyester Thermoplastic Elastomers through Star Block Architectures

A series of sustainable aliphatic polyester thermoplastic elastomers (APTPEs) consisting of multi-arm star polymers with arms of poly(L-lactide)- b -poly(  -methyl-ε-caprolactone), were investigated and compared to analogous linear poly(L-lactide)- b -poly( γ -methyl-ε-caprolactone)- b -poly(L-lactide) triblock polymers. Linear analogues with comparable arm molar mass and comparable overall molar mass were synthesized to distinguish architectural and molar mass effects. Overall, the star block polymers significantly outperformed their linear analogues with respect to ultimate tensile strength and tensile toughness, exhibiting more pronounced strain hardening than corresponding linear APTPEs. The stars exhibited high ultimate tensile strengths (~33 MPa) and large elongations at break (~1400 %), outperforming commercially relevant, petroleum-derived, and non-degradable styrenic TPEs. The star polymers also exhibited superior

[1]  G. Scholz,et al.  Thermoplastic Elastomers , 2021 .

[2]  R. Spontak,et al.  Tapered Multiblock Star Copolymers: Synthesis, Selective Hydrogenation, and Properties , 2020 .

[3]  M. Hillmyer,et al.  Efficient Polymerization of Methyl-ε-Caprolactone Mixtures To Access Sustainable Aliphatic Polyesters , 2020 .

[4]  M. Silberstein,et al.  Tailor-made thermoplastic elastomers: customisable materials via modulation of molecular weight distributions , 2019, Chemical science.

[5]  M. Hillmyer,et al.  Aliphatic Polyester Thermoplastic Elastomers Containing Hydrogen-Bonding Ureidopyrimidinone Endgroups. , 2019, Biomacromolecules.

[6]  J. Rottler,et al.  Entropic Network Model for Star Block Copolymer Thermoplastic Elastomers , 2018, Macromolecules.

[7]  W. Lu,et al.  Thermoplastic Elastomers Based on Block, Graft, and Star Copolymers , 2017 .

[8]  Naruki Kurokawa,et al.  Strong, Resilient, and Sustainable Aliphatic Polyester Thermoplastic Elastomers. , 2017, Biomacromolecules.

[9]  Deborah K. Schneiderman,et al.  50th Anniversary Perspective: There Is a Great Future in Sustainable Polymers , 2017 .

[10]  Jihoon Shin,et al.  Sustainable poly(ε-decalactone)−poly(l-lactide) multiarm star copolymer architectures for thermoplastic elastomers with fixed molar mass and block ratio , 2017 .

[11]  M. Matsen,et al.  Domain Bridging in Thermoplastic Elastomers of Star Block Copolymer , 2017 .

[12]  R. Register,et al.  Mechanical Properties of Star Block Polymer Thermoplastic Elastomers with Glassy and Crystalline End Blocks , 2016 .

[13]  P. Green,et al.  Dynamics of Star-Shaped Polystyrene Molecules: From Arm Retraction to Cooperativity , 2016 .

[14]  Deborah K. Schneiderman,et al.  Aliphatic Polyester Block Polymer Design , 2016 .

[15]  R. Register,et al.  Thermoplastic Elastomers via Combined Crystallization and Vitrification from Homogeneous Melts , 2016 .

[16]  A. Bons,et al.  Structural origins of mechanical properties and hysteresis in SIS triblock copolymers/polystyrene blends with spherical morphology , 2016, Rheologica Acta.

[17]  J. Rottler,et al.  Molecular Mechanisms of Plastic Deformation in Sphere-Forming Thermoplastic Elastomers , 2015 .

[18]  F. Bates,et al.  Crystallization and Mechanical Properties of Poly(l-lactide)-Based Rubbery/Semicrystalline Multiblock Copolymers , 2015 .

[19]  E. M. Hill,et al.  Poly(lactide)-block-poly(ε-caprolactone-co-ε-decalactone)-block-poly(lactide) copolymer elastomers , 2015 .

[20]  Deborah K. Schneiderman,et al.  Synthesis and Melt Processing of Sustainable Poly(ε-decalactone)-block-Poly(lactide) Multiblock Thermoplastic Elastomers , 2014 .

[21]  Kechun Zhang,et al.  Scalable production of mechanically tunable block polymers from sugar , 2014, Proceedings of the National Academy of Sciences.

[22]  M. Hillmyer,et al.  Aliphatic polyester block polymers: renewable, degradable, and sustainable. , 2014, Accounts of chemical research.

[23]  F. Bates,et al.  Sustainable Poly(lactide-b-butadiene) Multiblock Copolymers with Enhanced Mechanical Properties , 2013 .

[24]  W. Guerin,et al.  Macromolecular engineering via ring-opening polymerization (1): L-lactide/trimethylene carbonate block copolymers as thermoplastic elastomers , 2013 .

[25]  S. Venkatraman,et al.  Characterization and degradation of elastomeric four-armed star copolymers based on caprolactone and L-lactide. , 2012, Journal of biomedical materials research. Part A.

[26]  Wei-Na He,et al.  Crystallization assisted self-assembly of semicrystalline block copolymers , 2012 .

[27]  J. Hedrick,et al.  Amidine-Mediated Zwitterionic Polymerization of Lactide. , 2012, ACS macro letters.

[28]  P. Corbin,et al.  Synthesis and characterization of multi-armed calixarene- and resorcinarene-core polylactide star polymers , 2012 .

[29]  M. Matsen Effect of Architecture on the Phase Behavior of AB-Type Block Copolymer Melts , 2012 .

[30]  M. Hillmyer,et al.  Bulk Ring-Opening Transesterification Polymerization of the Renewable δ-Decalactone Using an Organocatalyst. , 2012, ACS macro letters.

[31]  M. Hillmyer,et al.  Polylactide–Poly(6-methyl-ε-caprolactone)–Polylactide Thermoplastic Elastomers , 2011 .

[32]  K. Matyjaszewski,et al.  Star-like poly(n-butyl acrylate)-b-poly(α-methylene-γ-butyrolactone) block copolymers for high temperature thermoplastic elastomers applications , 2010 .

[33]  R. Register,et al.  Thermoplastic elastomers with composite crystalline-glassy hard domains and single-phase melts , 2010 .

[34]  G. Fredrickson,et al.  Design of Soft and Strong Thermoplastic Elastomers Based on Nonlinear Block Copolymer Architectures Using Self-Consistent-Field Theory , 2010 .

[35]  K. Matyjaszewski,et al.  Synthesis, Characterization, and Properties of Starlike Poly(n-butyl acrylate)-b-poly(methyl methacrylate) Block Copolymers , 2010 .

[36]  M. Hillmyer,et al.  Renewable-resource thermoplastic elastomers based on polylactide and polymenthide. , 2007, Biomacromolecules.

[37]  Y. Shieh,et al.  Temperature‐modulated differential scanning calorimetry studies on the origin of double melting peaks in isothermally melt‐crystallized poly(L‐lactic acid) , 2007 .

[38]  Robert M. Waymouth,et al.  Guanidine and Amidine Organocatalysts for Ring-Opening Polymerization of Cyclic Esters , 2006 .

[39]  Bhanu Nandan,et al.  Crystallization Behavior of Crystalline‐Amorphous Diblock Copolymers Consisting of a Rubbery Amorphous Block , 2006 .

[40]  Filip Du Prez,et al.  Dual/heterofunctional initiators for the combination of mechanistically distinct polymerization techniques , 2006 .

[41]  Odile Dechy-Cabaret,et al.  Controlled ring-opening polymerization of lactide and glycolide. , 2004, Chemical reviews.

[42]  A. Ryan,et al.  Modes of Crystallization in Block Copolymer Microdomains: Breakout, Templated, and Confined , 2002 .

[43]  R. Jerome,et al.  Dependence of the Ultimate Tensile Strength of Thermoplastic Elastomers of the Triblock Type on the Molecular Weight between Chain Entanglements of the Central Block , 2000 .

[44]  H. Kricheldorf,et al.  Polylactones 48. SnOct2-Initiated polymerizations of lactide : A mechanistic study , 2000 .

[45]  J. Kennedy,et al.  Novel thermoplastic elastomers. II. Properties of star-block copolymers of PSt-b-PIB arms emanating from cyclosiloxane cores † , 1999 .

[46]  J. Kennedy,et al.  Novel Thermoplastic Elastomers: Star-Blocks Consisting of Eight Poly(Styrene-b-Isobutylene) Arms Radiating from a Calix[8]Arene Core , 1998 .

[47]  J. Noolandi,et al.  Stability of Ordered Phases in Diblock Copolymer Melts , 1997 .

[48]  T. McLeish,et al.  Parameter-Free Theory for Stress Relaxation in Star Polymer Melts , 1997 .

[49]  Marc Reisch,et al.  Thermoplastic Elastomers Target Rubber And Plastics Markets , 1996 .

[50]  Robert D. Spaans,et al.  Nonlinear Viscoelasticity of ABA Block Copolymer Melts: Stress Relaxation and Recovery , 1995 .

[51]  M. Schick,et al.  Microphase Separation in Starblock Copolymer Melts , 1994 .

[52]  D. S. Pearson,et al.  Rheological behavior of star-shaped polymers , 1993 .

[53]  R. Ball,et al.  Dynamic dilution and the viscosity of star-polymer melts , 1989 .

[54]  G. Hsiue,et al.  Stress relaxation and the domain structure of thermoplastic elastomer , 1988 .

[55]  I. Sanchez,et al.  Theory of Microphase Separation in Graft and Star Copolymers , 1986 .

[56]  D. S. Pearson,et al.  Viscoelastic properties of star-shaped polymers , 1984 .

[57]  M. Doi,et al.  Rheology of star polymers in concentrated solutions and melts , 1980 .

[58]  G. Hsiue,et al.  The stress relaxation of the thermoplastic elastomer (SBS type) , 1980 .

[59]  W. Graessley,et al.  Melt Rheology of Four-Arm and Six-Arm Star Polystyrenes , 1979 .

[60]  L. Fetters,et al.  Synthesis and Properties of Block Copolymers. 3. Polystyrene-Polydiene Star Block Copolymers , 1976 .

[61]  L. Fetters,et al.  The effect of diblock and homopolymer impurities on the morphology of triblock polymers , 1972 .

[62]  A. G. Watson,et al.  An investigation of the effect of chain geometry on the two-phase morphology of polystyrene/polyisoprene block copolymers , 1972 .

[63]  T. L. Smith,et al.  Viscoelastic and Ultimate Tensile Properties of Styrene-Butadiene-Styrene Block Copolymers , 1969 .

[64]  Alan N. Gent,et al.  Relaxation processes in vulcanized rubber. I. Relation among stress relaxation, creep, recovery, and hysteresis , 1962 .

[65]  Cyrille Boyer,et al.  Star Polymers. , 2016, Chemical reviews.

[66]  S. Venkatraman,et al.  Biodegradable elastomers based on ABA triblocks: influence of end-block crystallinity on elastomeric character , 2012 .

[67]  F. Bates,et al.  Structure and Properties of Semicrystalline−Rubbery Multiblock Copolymers , 2006 .

[68]  S. Clarke,et al.  Stress relaxation in transient networks of symmetric triblock styrene-isoprene-styrene copolymer , 2002 .

[69]  A. J. Pennings,et al.  Star-shaped poly[(trimethylene carbonate)-co-(epsilon-caprolactone)] and its block copolymers with lactide/glycolide: synthesis, characterization and properties , 2000 .

[70]  G. Fredrickson,et al.  Block copolymer thermodynamics: theory and experiment. , 1990, Annual review of physical chemistry.

[71]  E. Thomas,et al.  Effect of arm number and arm molecular weight on the solid-state morphology of poly(styrene-isoprene) star block copolymers , 1986 .