Structural health monitoring data fusion for in-situ life prognosis of composite structures

A novel framework to fuse structural health monitoring (SHM) data from different in-situ monitoring techniques is proposed aiming to develop a hyper-feature towards more effective prognostics. A state-of-the-art Non-Homogenous Hidden Semi Markov Model (NHHSMM) is utilized to model the damage accumulation of composite structures, subjected to fatigue loading, and estimate the remaining useful life (RUL) using conventional as well as fused SHM data. Acoustic Emission (AE) and Digital Image Correlation (DIC) are the selected in-situ SHM techniques. The proposed methodology is applied to open hole carbon/epoxy specimens under fatigue loading. RUL estimations utilizing features extracted from each SHM technique and after data fusion are compared, via established and newly proposed prognostic performance metrics.

[1]  Zheng Liu,et al.  Survey: State of the Art in NDE Data Fusion Techniques , 2007, IEEE Transactions on Instrumentation and Measurement.

[2]  Shuai Zhang,et al.  Two-stage structural damage detection using fuzzy neural networks and data fusion techniques , 2011, Expert Syst. Appl..

[3]  Min Li,et al.  Hierarchical ensemble-based data fusion for structural health monitoring , 2010 .

[4]  Fang Qian,et al.  Remaining useful life prediction using ranking mutual information based monotonic health indicator , 2015, 2015 Prognostics and System Health Management Conference (PHM).

[5]  Cordelia Schmid,et al.  Product Quantization for Nearest Neighbor Search , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[6]  Paul R. Drake,et al.  Condition-based maintenance and machine diagnostics , 1994 .

[7]  Ming Jian Zuo,et al.  An integrated framework for online diagnostic and prognostic health monitoring using a multistate deterioration process , 2014, Reliab. Eng. Syst. Saf..

[8]  Alaa Mohamed Riad,et al.  Prognostics: a literature review , 2016, Complex & Intelligent Systems.

[9]  Donghua Zhou,et al.  Remaining useful life estimation - A review on the statistical data driven approaches , 2011, Eur. J. Oper. Res..

[10]  Sheng Yue,et al.  A comparison of the power of the t test, Mann-Kendall and bootstrap tests for trend detection / Une comparaison de la puissance des tests t de Student, de Mann-Kendall et du bootstrap pour la détection de tendance , 2004 .

[11]  Ming J. Zuo,et al.  Multistate degradation and supervised estimation methods for a condition-monitored device , 2014 .

[12]  Theodoros Loutas,et al.  Fatigue damage diagnostics and prognostics of composites utilizing structural health monitoring data and stochastic processes , 2016 .

[13]  Sankalita Saha,et al.  Metrics for Offline Evaluation of Prognostic Performance , 2021, International Journal of Prognostics and Health Management.

[14]  Xavier E. Gros Multisensor Data Fusion and Integration in NDT , 2001 .

[15]  Kai Goebel,et al.  Probabilistic fatigue damage prognosis of lap joint using Bayesian updating , 2015 .

[16]  K. Goebel,et al.  Bayesian model selection and parameter estimation for fatigue damage progression models in composites , 2015 .

[17]  D. L. Hall,et al.  Mathematical Techniques in Multisensor Data Fusion , 1992 .

[18]  Rinze Benedictus,et al.  Methods for the prediction of fatigue delamination growth in composites and adhesive bonds: A critical review , 2013 .

[19]  Charles R Farrar,et al.  Damage prognosis: the future of structural health monitoring , 2007, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[20]  Kai Goebel,et al.  A Bayesian framework for fatigue life prediction of composite laminates under co-existing matrix cracks and delamination , 2018 .

[21]  Juan Chiachio,et al.  Condition-based prediction of time-dependent reliability in composites , 2015, Reliab. Eng. Syst. Saf..

[22]  Linxia Liao,et al.  Discovering Prognostic Features Using Genetic Programming in Remaining Useful Life Prediction , 2014, IEEE Transactions on Industrial Electronics.

[23]  Yaguo Lei,et al.  Intelligent Fault Diagnosis and Remaining Useful Life Prediction of Rotating Machinery , 2016 .

[24]  Enrico Zio,et al.  FAILURE PROGNOSTICS BY A DATA-DRIVEN SIMILARITY-BASED APPROACH , 2013 .

[25]  Alberto Carpinteri,et al.  A unified interpretation of the power laws in fatigue and the analytical correlations between cyclic properties of engineering materials , 2009 .

[26]  James Llinas,et al.  An introduction to multisensor data fusion , 1997, Proc. IEEE.

[27]  Fred W. Glover,et al.  Scatter Search and Local Nlp Solvers: A Multistart Framework for Global Optimization , 2006, INFORMS J. Comput..

[28]  Theodoros Loutas,et al.  A data-driven probabilistic framework towards the in-situ prognostics of fatigue life of composites based on acoustic emission data , 2017 .

[29]  Theodoros Loutas,et al.  Online Remaining Fatigue Life Prognosis for Composite Materials Based on Strain Data and Stochastic Modeling , 2016 .

[30]  Aditi Chattopadhyay,et al.  A Gaussian process based prognostics framework for composite structures , 2009, Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[31]  Aditi Chattopadhyay,et al.  Condition Based Structural Health Monitoring and Prognosis of Composite Structures under Uniaxial and Biaxial Loading , 2010 .

[32]  Luca Podofillini,et al.  Condition-based maintenance optimization by means of genetic algorithms and Monte Carlo simulation , 2002, Reliab. Eng. Syst. Saf..

[33]  Ivan Bartoli,et al.  Damage quantification in polymer composites using a hybrid NDT approach , 2013 .