Microcavity controlled coupling of excitonic qubits

Controlled non-local energy and coherence transfer enables light harvesting in photosynthesis and non-local logical operations in quantum computing. This process is intuitively pictured by a pair of mechanical oscillators, coupled by a spring, allowing for a reversible exchange of excitation. On a microscopic level, the most relevant mechanism of coherent coupling of distant quantum bits—like trapped ions, superconducting qubits or excitons confined in semiconductor quantum dots—is coupling via the electromagnetic field. Here we demonstrate the controlled coherent coupling of spatially separated quantum dots via the photon mode of a solid state microresonator using the strong exciton–photon coupling regime. This is enabled by two-dimensional spectroscopy of the sample’s coherent response, a sensitive probe of the coherent coupling. The results are quantitatively understood in a rigorous description of the cavity-mediated coupling of the quantum dot excitons. This mechanism can be used, for instance in photonic crystal cavity networks, to enable a long-range, non-local coherent coupling.

[1]  S. Mukamel,et al.  Multidimensional femtosecond correlation spectroscopies of electronic and vibrational excitations. , 2000, Annual review of physical chemistry.

[2]  M. Kaniber,et al.  Mutual coupling of two semiconductor quantum dots via an optical nanocavity , 2009, 0912.3685.

[3]  Pierre M. Petroff,et al.  Optical pumping of a single hole spin in a quantum dot , 2008, Nature.

[4]  Graham R Fleming,et al.  Lessons from nature about solar light harvesting. , 2011, Nature chemistry.

[5]  Dirk Reuter,et al.  Exciton dephasing via phonon interactions in InAs quantum dots: dependence on quantum confinement , 2005 .

[6]  V. Kulakovskii,et al.  Strong coupling in a single quantum dot–semiconductor microcavity system , 2004, Nature.

[7]  F. W. Cummings,et al.  Exact Solution for an N-Molecule-Radiation-Field Hamiltonian , 1968 .

[8]  F. Laussy,et al.  Luminescence spectra of quantum dots in microcavities. III. Multiple quantum dots , 2011 .

[9]  G. Rupper,et al.  Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity , 2004, Nature.

[10]  A Lemaître,et al.  Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity. , 2004, Physical review letters.

[11]  Jens Koch,et al.  Coupling superconducting qubits via a cavity bus , 2007, Nature.

[12]  P. Maurer,et al.  Using Sideband Transitions for Two-Qubit Operations in Superconducting Circuits , 2008, 0812.2678.

[13]  Gregory D. Scholes,et al.  Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature , 2010, Nature.

[14]  E. Jaynes,et al.  Comparison of quantum and semiclassical radiation theories with application to the beam maser , 1962 .

[15]  K. Papagelis,et al.  Temperature dependence of exciton peak energies in ZnS, ZnSe, and ZnTe epitaxial films , 1999 .

[16]  J. M. Smith,et al.  Absorption and photoluminescence spectroscopy on a single self-assembled charge-tunable quantum dot , 2005 .

[17]  Allan S. Bracker,et al.  Optical control of one and two hole spins in interacting quantum dots , 2011 .

[18]  I. Ial,et al.  Nature Communications , 2010, Nature Cell Biology.

[19]  Lee C. Bassett,et al.  Spin-Light Coherence for Single-Spin Measurement and Control in Diamond , 2010, Science.

[20]  Christian Schneider,et al.  Ultrafast optical spin echo in a single quantum dot , 2010 .

[21]  Brian Patton,et al.  Heterodyne spectral interferometry for multidimensional nonlinear spectroscopy of individual quantum systems. , 2006, Optics letters.

[22]  F. Laussy,et al.  9 – Luminescence spectra of quantum dots in microcavities , 2012 .

[23]  S. Girvin,et al.  Wiring up quantum systems , 2008, Nature.

[24]  Yasuhiko Arakawa,et al.  Strong coupling between a photonic crystal nanobeam cavity and a single quantum dot , 2011 .

[25]  Dirk Englund,et al.  Coherent generation of non-classical light on a chip via photon-induced tunnelling and blockade , 2008, 0804.2740.

[26]  Blake R. Johnson,et al.  Simple all-microwave entangling gate for fixed-frequency superconducting qubits. , 2011, Physical review letters.

[27]  W. Langbein,et al.  Transient coherent nonlinear spectroscopy of single quantum dots , 2007, Journal of physics. Condensed matter : an Institute of Physics journal.

[28]  Brian Patton,et al.  Coherent coupling between distant excitons revealed by two-dimensional nonlinear hyperspectral imaging , 2011 .

[29]  C. Schneider,et al.  Up on the Jaynes-Cummings ladder of a quantum-dot/microcavity system. , 2010, Nature materials.

[30]  Andrei Faraon,et al.  Generation and transfer of single photons on a photonic crystal chip. , 2007, Optics express.

[31]  B. Gerardot,et al.  Accessing the dark exciton with light , 2010 .

[32]  U. Woggon,et al.  Time- and spectrally-resolved four-wave mixing in single CdTe/ZnTe quantum dots , 2006 .

[33]  A. Forchel,et al.  Inhibition and enhancement of the spontaneous emission of quantum dots in structured microresonators. , 2001, Physical review letters.

[34]  Daniel B. Turner,et al.  Two-Quantum 2D FT Electronic Spectroscopy of Biexcitons in GaAs Quantum Wells , 2009, Science.

[35]  M Kamp,et al.  Coherent photonic coupling of semiconductor quantum dots. , 2006, Optics letters.