THE COYOTE UNIVERSE EXTENDED: PRECISION EMULATION OF THE MATTER POWER SPECTRUM

Modern sky surveys are returning precision measurements of cosmological statistics such as weak lensing shear correlations, the distribution of galaxies, and cluster abundance. To fully exploit these observations, theorists must provide predictions that are at least as accurate as the measurements, as well as robust estimates of systematic errors that are inherent to the modeling process. In the nonlinear regime of structure formation, this challenge can only be overcome by developing a large-scale, multi-physics simulation capability covering a range of cosmological models and astrophysical processes. As a first step to achieving this goal, we have recently developed a prediction scheme for the matter power spectrum (a so-called emulator), accurate at the 1% level out to k ~ 1 Mpc–1 and z = 1 for wCDM cosmologies based on a set of high-accuracy N-body simulations. It is highly desirable to increase the range in both redshift and wavenumber and to extend the reach in cosmological parameter space. To make progress in this direction, while minimizing computational cost, we present a strategy that maximally reuses the original simulations. We demonstrate improvement over the original spatial dynamic range by an order of magnitude, reaching k ~ 10 h Mpc–1, a four-fold increase in redshift coverage, to z = 4, and now include the Hubble parameter as a new independent variable. To further the range in k and z, a new set of nested simulations run at modest cost is added to the original set. The extension in h is performed by including perturbation theory results within a multi-scale procedure for building the emulator. This economical methodology still gives excellent error control, ~5% near the edges of the domain of applicability of the emulator. A public domain code for the new emulator is released as part of the work presented in this paper.

[1]  Stefan Hilbert,et al.  COSMIC SHEAR RESULTS FROM THE DEEP LENS SURVEY. I. JOINT CONSTRAINTS ON ΩM AND σ8 WITH A TWO-DIMENSIONAL ANALYSIS , 2012, 1210.2732.

[2]  A comparison of the evolution of density fields in perturbation theory and numerical simulations - II. Counts-in-cells analysis , 1994, astro-ph/9408057.

[3]  T. Eifler Weak-lensing statistics from the Coyote Universe , 2010, 1012.2978.

[4]  D. Higdon,et al.  THE COYOTE UNIVERSE. I. PRECISION DETERMINATION OF THE NONLINEAR MATTER POWER SPECTRUM , 2008, 0812.1052.

[5]  Hal Finkel,et al.  The Universe at extreme scale: Multi-petaflop sky simulation on the BG/Q , 2012, 2012 International Conference for High Performance Computing, Networking, Storage and Analysis.

[6]  V. Springel,et al.  The Influence of Baryons on the Clustering of Matter and Weak-Lensing Surveys , 2005, astro-ph/0512426.

[7]  S. J. Dodds,et al.  Non-linear evolution of cosmological power spectra , 1996 .

[8]  A. G. Alexei,et al.  OBSERVATIONAL EVIDENCE FROM SUPERNOVAE FOR AN ACCELERATING UNIVERSE AND A COSMOLOGICAL CONSTANT , 1998 .

[9]  Thomas J. Santner,et al.  The Design and Analysis of Computer Experiments , 2003, Springer Series in Statistics.

[10]  J. Peacock,et al.  Stable clustering, the halo model and non-linear cosmological power spectra , 2002, astro-ph/0207664.

[11]  Joop Schaye,et al.  The effects of galaxy formation on the matter power spectrum: a challenge for precision cosmology , 2011, 1104.1174.

[12]  David Higdon,et al.  Cosmic Calibration , 2006 .

[13]  I. Tereno,et al.  Cosmic shear analysis with CFHTLS deep data , 2005, astro-ph/0511090.

[14]  C. Anderson,et al.  Quantitative Methods for Current Environmental Issues , 2005 .

[15]  D. Schlegel,et al.  Seeing in the dark – II. Cosmic shear in the Sloan Digital Sky Survey , 2011, 1112.3143.

[16]  Douglas H. Rudd,et al.  Effects of Baryons and Dissipation on the Matter Power Spectrum , 2007 .

[17]  Takahiro Nishimichi,et al.  REVISING THE HALOFIT MODEL FOR THE NONLINEAR MATTER POWER SPECTRUM , 2012, 1208.2701.

[18]  A. Kravtsov,et al.  IMPLEMENTING THE DC MODE IN COSMOLOGICAL SIMULATIONS WITH SUPERCOMOVING VARIABLES , 2011, 1104.1428.

[19]  Alexey Vikhlinin,et al.  CHANDRA CLUSTER COSMOLOGY PROJECT III: COSMOLOGICAL PARAMETER CONSTRAINTS , 2008, 0812.2720.

[20]  D. Eisenstein,et al.  The Baryon Oscillation Spectroscopic Survey: Precision measurements of the absolute cosmic distance scale , 2009, 0902.4680.

[21]  M. Phillips,et al.  Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant , 1998, astro-ph/9805201.

[22]  David Higdon,et al.  THE COYOTE UNIVERSE. II. COSMOLOGICAL MODELS AND PRECISION EMULATION OF THE NONLINEAR MATTER POWER SPECTRUM , 2009, 0902.0429.

[23]  Andrew P. Hearin,et al.  General Requirements on Matter Power Spectrum Predictions for Cosmology with Weak Lensing Tomography , 2011, 1111.0052.

[24]  R. Nichol,et al.  GALAXY CLUSTERING IN THE COMPLETED SDSS REDSHIFT SURVEY: THE DEPENDENCE ON COLOR AND LUMINOSITY , 2010, 1005.2413.

[25]  V. Springel The Cosmological simulation code GADGET-2 , 2005, astro-ph/0505010.

[26]  A. Amara,et al.  Euclid Imaging Consortium Science Book , 2010 .

[27]  Stefano Casertano,et al.  A 3% SOLUTION: DETERMINATION OF THE HUBBLE CONSTANT WITH THE HUBBLE SPACE TELESCOPE AND WIDE FIELD CAMERA 3 , 2011, 1103.2976.

[28]  L. Knox,et al.  INTELLIGENT DESIGN: ON THE EMULATION OF COSMOLOGICAL SIMULATIONS , 2010, 1002.1752.

[29]  H. Hoekstra,et al.  Quantifying the effect of baryon physics on weak lensing tomography , 2011, 1105.1075.

[30]  Jeffrey M. Kubo,et al.  THE SDSS CO-ADD: COSMIC SHEAR MEASUREMENT , 2011, 1111.6622.

[31]  Yannick Mellier,et al.  CFHTLenS: combined probe cosmological model comparison using 2D weak gravitational lensing , 2012, 1212.3338.

[32]  Katrin Heitmann,et al.  MASS FUNCTION PREDICTIONS BEYOND ΛCDM , 2010, 1005.2239.

[33]  Adrian T. Lee,et al.  A MEASUREMENT OF GRAVITATIONAL LENSING OF THE MICROWAVE BACKGROUND USING SOUTH POLE TELESCOPE DATA , 2012, 1202.0546.

[34]  Adam G. Riess,et al.  Observational probes of cosmic acceleration , 2012, 1201.2434.

[35]  Hume A. Feldman,et al.  PkANN - I. Non-linear matter power spectrum interpolation through artificial neural networks , 2012, 1203.1695.

[36]  Katrin Heitmann,et al.  COSMIC EMULATION: THE CONCENTRATION–MASS RELATION FOR wCDM UNIVERSES , 2012, 1210.1576.

[37]  Scott Dodelson,et al.  Accounting for Baryons in Cosmological Constraints from Cosmic Shear , 2012, 1212.1177.

[38]  Edward J. Wollack,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2008, 0803.0547.

[39]  R. Ellis,et al.  Measurements of $\Omega$ and $\Lambda$ from 42 high redshift supernovae , 1998, astro-ph/9812133.

[40]  Earl Lawrence,et al.  THE COYOTE UNIVERSE. III. SIMULATION SUITE AND PRECISION EMULATOR FOR THE NONLINEAR MATTER POWER SPECTRUM , 2009, 0912.4490.

[41]  Karl Glazebrook,et al.  The WiggleZ Dark Energy Survey: survey design and first data release , 2009, 0911.4246.

[42]  Stephen A. Smee,et al.  Prime focus spectrograph: Subaru's future , 2012, Other Conferences.

[43]  G. Hasinger,et al.  eROSITA science book: mapping the structure of the energetic universe , 2012, 1209.3114.

[44]  H. M. P. Couchman,et al.  The mass function of dark matter haloes , 2000, astro-ph/0005260.

[45]  M. Viel,et al.  Massive neutrinos and the non‐linear matter power spectrum , 2011, 1109.4416.

[46]  R. Wechsler,et al.  THE IMPACT OF THEORETICAL UNCERTAINTIES IN THE HALO MASS FUNCTION AND HALO BIAS ON PRECISION COSMOLOGY , 2009, 0910.3668.

[47]  R. Chary,et al.  DISSECTION OF Hα EMITTERS : LOW-z ANALOGS OF z > 4 STAR-FORMING GALAXIES , 2012, 1205.0949.

[48]  C. A. Oxborrow,et al.  Planck 2013 results. XVI. Cosmological parameters , 2013, 1303.5076.

[49]  Donald W. Sweeney,et al.  LSST Science Book, Version 2.0 , 2009, 0912.0201.

[50]  Kenny Q. Ye,et al.  Algorithmic construction of optimal symmetric Latin hypercube designs , 2000 .

[51]  Takahiro Nishimichi,et al.  Direct and fast calculation of regularized cosmological power spectrum at two-loop order , 2012 .

[52]  L. Knox,et al.  Effect of Hot Baryons on the Weak-Lensing Shear Power Spectrum , 2004, astro-ph/0409198.