Real-Time LDCRF-Based Method for Inferring TV Viewer Interest

Context-awareness provides users with more versatile user interface environments when using digital devices. In a TV viewing environment, context-awareness techniques can be used for recommending useful information related to the viewed program. To incorporate a user's preference in doing so, it is vital to infer whether the viewer is actually interested in the TV program. Therefore, we propose a method for inferring viewer interest in a TV program. In the proposed method, we regard the problem of inferring viewer interest as a sequential labeling problem and solve it by applying latent dynamic conditional random fields to data sequences generated by integrating the operational log information of user interaction and visual information of viewer behaviors.

[1]  Patrick Seemann,et al.  Matrix Factorization Techniques for Recommender Systems , 2014 .

[2]  Yehuda Koren,et al.  Matrix Factorization Techniques for Recommender Systems , 2009, Computer.

[3]  Matthias Baldauf,et al.  A survey on context-aware systems , 2007, Int. J. Ad Hoc Ubiquitous Comput..

[4]  Sergiu M. Dascalu,et al.  User-context for adaptive user interfaces , 2007, IUI '07.

[5]  Manuela M. Veloso,et al.  Conditional random fields for activity recognition , 2007, AAMAS '07.

[6]  Nicu Sebe,et al.  Computer Vision in Human-Computer Interaction, HCI/ICCV 2005 , 2005 .

[7]  Gediminas Adomavicius,et al.  Context-aware recommender systems , 2008, RecSys '08.

[8]  Trevor Darrell,et al.  Latent-Dynamic Discriminative Models for Continuous Gesture Recognition , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[9]  Nicu Sebe,et al.  Human-centered computing: a multimedia perspective , 2006, MM '06.

[10]  Gwenn Englebienne,et al.  Recognizing Activities in Multiple Contexts using Transfer Learning , 2008, AAAI Fall Symposium: AI in Eldercare: New Solutions to Old Problems.

[11]  Nicu Sebe,et al.  Affective multimodal human-computer interaction , 2005, ACM Multimedia.

[12]  Henry A. Kautz,et al.  Extracting Places and Activities from GPS Traces Using Hierarchical Conditional Random Fields , 2007, Int. J. Robotics Res..

[13]  Luc Van Gool,et al.  Speeded-Up Robust Features (SURF) , 2008, Comput. Vis. Image Underst..

[14]  Andrew McCallum,et al.  Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data , 2001, ICML.

[15]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[16]  M. Pontil,et al.  Inferring Interests from Mobility and Social Interactions , 2009 .

[17]  Mahito Fujii,et al.  Skin Region Extraction and Person-Independent Deformable Face Templates for Fast Video Indexing , 2011, 2011 IEEE International Symposium on Multimedia.

[18]  Mahito Fujii,et al.  Video Face Tracking and Recognition with Skin Region Extraction and Deformable Template Matching , 2012, Int. J. Multim. Data Eng. Manag..

[19]  Roel Vertegaal,et al.  Attentive User Interfaces , 2003 .

[20]  Christopher Hunt,et al.  Notes on the OpenSURF Library , 2009 .