Dirichlet forms on non-self-similar fractals: Hanoi attractors
暂无分享,去创建一个
[1] M. Okada,et al. Heat kernels on infinite graph networks and deformed Sierpinski gaskets , 1990 .
[2] S. Klavžar,et al. Graphs S(n, k) and a Variant of the Tower of Hanoi Problem , 1997 .
[3] Uta Freiberg,et al. Energy Form on a Closed Fractal Curve , 2004 .
[4] W. Rudin. Real and complex analysis , 1968 .
[5] M. R. Lancia,et al. Energy forms on conformal C1‐diffeomorphic images of the Sierpinski gasket , 2008 .
[6] James Tanton. Mathematics Galore!: The Tower of Hanoi , 2012 .
[7] Patricia Alonso-Ruiz,et al. Dirichlet forms on non self-similar sets : Hanoi attractors and the Sierpiński gasket , 2013 .
[8] J. Kigami,et al. Analysis on Fractals , 2001 .
[9] Patricia Alonso-Ruiz,et al. Hanoi attractors and the Sierpiński gasket , 2012, Int. J. Math. Model. Numer. Optimisation.
[10] Jun Kigami,et al. A harmonic calculus on the Sierpinski spaces , 1989 .
[11] A. M. Hinz,et al. The average distance on the Sierpiński gasket , 1990 .
[12] Robert S. Strichartz,et al. Differential Equations on Fractals: A Tutorial , 2006 .
[13] S. Goldstein. Random Walks and Diffusions on Fractals , 1987 .
[14] Martin T. Barlow,et al. Brownian motion on the Sierpinski gasket , 1988 .
[15] Jun Kigami,et al. Weyl's problem for the spectral distribution of Laplacians on P.C.F. self-similar fractals , 1993 .
[16] S. Kusuoka,et al. Dirichlet forms on fractals and products of random matrices , 1989 .