Closing the Door on Quantum Nonlocality

Bell-type inequalities are proven using oversimplified probabilistic models and/or counterfactual definiteness (CFD). If setting-dependent variables describing measuring instruments are correctly introduced, none of these inequalities may be proven. In spite of this, a belief in a mysterious quantum nonlocality is not fading. Computer simulations of Bell tests allow people to study the different ways in which the experimental data might have been created. They also allow for the generation of various counterfactual experiments’ outcomes, such as repeated or simultaneous measurements performed in different settings on the same “photon-pair”, and so forth. They allow for the reinforcing or relaxing of CFD compliance and/or for studying the impact of various “photon identification procedures”, mimicking those used in real experiments. Data samples consistent with quantum predictions may be generated by using a specific setting-dependent identification procedure. It reflects the active role of instruments during the measurement process. Each of the setting-dependent data samples are consistent with specific setting-dependent probabilistic models which may not be deduced using non-contextual local realistic or stochastic hidden variables. In this paper, we will be discussing the results of these simulations. Since the data samples are generated in a locally causal way, these simulations provide additional strong arguments for closing the door on quantum nonlocality.

[1]  Alain Aspect,et al.  Viewpoint: Closing the Door on Einstein and Bohr’s Quantum Debate , 2015 .

[2]  W. M. de Muynck,et al.  Interpretations of quantum mechanics, joint measurement of incompatible observables, and counterfactual definiteness , 1994 .

[3]  Marian Kupczynski,et al.  Is quantum theory predictably complete? , 2008, 0810.1259.

[4]  H. De Raedt,et al.  Data analysis of Einstein-Podolsky-Rosen-Bohm laboratory experiments , 2013, Optics & Photonics - Optical Engineering + Applications.

[5]  Kristel Michielsen,et al.  Event-based simulation of quantum physics experiments , 2013, 1312.6942.

[6]  Andrei Khrennikov,et al.  Bell-Boole Inequality: Nonlocality or Probabilistic Incompatibility of Random Variables? , 2008, Entropy.

[7]  A. Zeilinger,et al.  Significant-Loophole-Free Test of Bell's Theorem with Entangled Photons. , 2015, Physical review letters.

[8]  Andrei Khrennikov Probability and Randomness: Quantum Versus Classical , 2016 .

[9]  H. De Raedt,et al.  Einstein-Podolsky-Rosen-Bohm laboratory experiments: Data analysis and simulation , 2011, 1112.2629.

[10]  Andrei Khrennikov,et al.  Classical probability model for Bell inequality , 2014, 1404.7038.

[11]  Karl Hess,et al.  Extended Boole-Bell inequalities applicable to quantum theory , 2009, 0901.2546.

[12]  Guillaume Adenier,et al.  Is the fair sampling assumption supported by EPR experiments , 2007 .

[13]  H. Weinfurter,et al.  Violation of Bell's Inequality under Strict Einstein Locality Conditions , 1998, quant-ph/9810080.

[14]  A. Shimony,et al.  Bell's theorem. Experimental tests and implications , 1978 .

[15]  B. Mielnik Theory of filters , 1969 .

[16]  Marian Kupczynski Time Series, Stochastic Processes and Completeness of Quantum Theory , 2011 .

[17]  L. Accardi Topics in quantum probability , 1981 .

[18]  N. Mermin Hidden variables and the two theorems of John Bell , 1993, 1802.10119.

[19]  Marian Kupczynski,et al.  EPR paradox, quantum nonlocality and physical reality , 2016, 1602.02959.

[20]  Aaron J. Miller,et al.  Detection-loophole-free test of quantum nonlocality, and applications. , 2013, Physical review letters.

[21]  J. Winkler Entanglement and Bell ’ s Inequalities , 2009 .

[22]  P. Pearle Hidden-Variable Example Based upon Data Rejection , 1970 .

[23]  E. Knill,et al.  A strong loophole-free test of local realism , 2015, 2016 Conference on Lasers and Electro-Optics (CLEO).

[24]  Andrei Khrennikov,et al.  Contextual Approach to Quantum Formalism , 2009 .

[25]  B. M. Fulk MATH , 1992 .

[26]  S. Miyashita,et al.  Event-Based Computer Simulation Model of Aspect-Type Experiments Strictly Satisfying Einstein's Locality Conditions , 2007, 0712.2565.

[27]  Assumptions underlying Bell's inequalities , 2002, quant-ph/0208161.

[28]  Marian Kupczynski Seventy Years of the EPR Paradox , 2006 .

[29]  M. KtYeCZYNSrdt Is the Hilbert space language too rich , 2005 .

[30]  R. B. Lindsay,et al.  Essays 1958-1962 on Atomic Physics and Human Knowledge , 1987 .

[31]  Arthur Fine,et al.  Joint distributions, quantum correlations, and commuting observables , 1982 .

[32]  H. Dishkant,et al.  Logic of Quantum Mechanics , 1976 .

[33]  Karl Hess,et al.  A possible loophole in the theorem of Bell , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[34]  Marian Kupczynski On operational approach to entanglement and how to certify it , 2016 .

[35]  Karl Hess,et al.  The digital computer as a metaphor for the perfect laboratory experiment: Loophole-free Bell experiments , 2016, Comput. Phys. Commun..

[36]  W. H. Furry Note on the Quantum-Mechanical Theory of Measurement , 1936 .

[37]  G. Roger,et al.  Experimental Test of Bell's Inequalities Using Time- Varying Analyzers , 1982 .

[38]  Eberhard,et al.  Background level and counter efficiencies required for a loophole-free Einstein-Podolsky-Rosen experiment. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[39]  Karl Hess,et al.  Hidden assumptions in the derivation of the theorem of Bell , 2011, 1108.3583.

[40]  S. Miyashita,et al.  Event-by-event simulation of quantum phenomena : Application to Einstein-Podolosky-Rosen-Bohm experiments , 2007, 0712.3781.

[41]  M. Kupczynski Quantum mechanics and modeling of physical reality , 2018, Physica Scripta.

[42]  Sidney Coleman,et al.  High-energy tests of Lorentz invariance , 1999 .

[43]  E. Wigner On Hidden Variables and Quantum Mechanical Probabilities , 1970 .

[44]  Andrei Khrennikov,et al.  Violation of Bell’s Inequality and non‐Kolmogorovness , 2009 .

[45]  M. Kupczyński,et al.  Bertrand's paradox and Bell's inequalities , 1987 .

[46]  J. S. BELLt Einstein-Podolsky-Rosen Paradox , 2018 .

[47]  Marian Kupczynski,et al.  EPR Paradox, Locality and Completeness of Quantum Theory , 2007, 0710.3510.

[48]  A E Bostwick,et al.  THE THEORY OF PROBABILITIES. , 1896, Science.

[49]  M. Kupczyński,et al.  On some new tests of completeness of quantum mechanics , 1986 .

[50]  Saverio Pascazio,et al.  Time and Bell-type inequalities , 1986 .

[51]  Q. Yuan,et al.  Constraints and tests of the OPERA superluminal neutrinos. , 2011, Physical review letters.

[52]  Albert Einstein,et al.  Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? , 1935 .

[53]  H. S. Allen The Quantum Theory , 1928, Nature.

[54]  A. Zeilinger,et al.  Speakable and Unspeakable in Quantum Mechanics , 1989 .

[55]  Andrei Khrennikov,et al.  The Principle of Supplementarity: A Contextual Probabilistic Viewpoint to Complementarity, the Interference of Probabilities and Incompatibility of Variables in Quantum Mechanics , 2005 .

[56]  Ana María Cetto,et al.  On hidden-variable theories and Bell's inequality , 1972 .

[57]  Dipankar Home,et al.  Conceptual Foundations Of Quantum Physics , 1997 .

[58]  M. Kupczynski Quantum mechanics and modelling of physical reality . , 2018 .

[59]  J. Bell On the Problem of Hidden Variables in Quantum Mechanics , 1966 .

[60]  Marian Kupczynski Bell Inequalities, Experimental Protocols and Contextuality , 2014 .

[61]  Kristel Michielsen,et al.  Event-by-Event Simulation of Einstein-Podolsky-Rosen-Bohm Experiments , 2007, 0712.3693.

[62]  Jan-AAke Larsson,et al.  Loopholes in Bell inequality tests of local realism , 2014, 1407.0363.

[63]  Marian Kupczynski,et al.  The Contextuality Loophole is Fatal for the Derivation of Bell Inequalities: Reply to a Comment by I. Schmelzer , 2016, 1611.05021.

[64]  Ehtibar N. Dzhafarov,et al.  Selectivity in Probabilistic Causality: Where Psychology Runs Into Quantum Physics , 2011, 1110.2388.

[65]  Marek Zukowski,et al.  Quantum non-locality—it ainʼt necessarily so... , 2014, 1501.04618.

[66]  Marian Kupczynski,et al.  Breakdown of statistical inference from some random experiments , 2016, Comput. Phys. Commun..

[67]  Karl Hess,et al.  Special Issue: Ever New "Loopholes" in Bell’s Argument and Experimental Tests , 2017 .

[68]  Andrei Khrennikov,et al.  After Bell , 2016, 1603.08674.

[69]  Marian Kupczynski,et al.  Can we close the Bohr–Einstein quantum debate? , 2016, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[70]  Andrei Khrennikov,et al.  Bell's inequality: Physics meets Probability , 2007, 0709.3909.

[71]  Marian Kupczynski On the Completeness of Quantum Mechanics , 2002 .

[72]  Itamar Pitowsky,et al.  Deterministic model of spin and statistics , 1983 .

[73]  G. Amelino-Camelia,et al.  Taming nonlocality in theories with Planck-scale deformed Lorentz symmetry. , 2010, Physical review letters.

[74]  T. Nieuwenhuizen,et al.  Where Bell went wrong , 2008, 0812.3058.

[75]  Marian Kupczynski,et al.  Is Einsteinian no-signalling violated in Bell tests? , 2017, 1709.00708.

[76]  M. Horne,et al.  Experimental Consequences of Objective Local Theories , 1974 .

[77]  M. Kupczyński,et al.  Pitovsky model and complementarity , 1987 .

[78]  M. Kupczynski Entanglement and quantum nonlocality demystified , 2012, 1205.4636.

[79]  Luigi Accardi,et al.  Some loopholes to save quantum nonlocality , 2005 .

[80]  A. Fine Hidden Variables, Joint Probability, and the Bell Inequalities , 1982 .

[81]  A. Shimony,et al.  Proposed Experiment to Test Local Hidden Variable Theories. , 1969 .

[82]  Richard Gill,et al.  Bell's inequality and the coincidence-time loophole , 2003, quant-ph/0312035.

[83]  Andrei Khrennikov,et al.  Ubiquitous Quantum Structure , 2010 .

[84]  Ehtibar N. Dzhafarov,et al.  No-Forcing and No-Matching Theorems for Classical Probability Applied to Quantum Mechanics , 2014 .

[85]  A. Khrennikov After Bell , 2016, 1603.08674.

[86]  Dirk Aerts,et al.  A possible explanation for the probabilities of quantum mechanics , 1986 .

[87]  H. Raedt,et al.  Irrelevance of Bell's Theorem for experiments involving correlations in space and time: a specific loophole-free computer-example , 2016, 1605.05237.

[88]  I. Pitowsky,et al.  George Boole's ‘Conditions of Possible Experience’ and the Quantum Puzzle , 1994, The British Journal for the Philosophy of Science.

[89]  Diederik Aerts,et al.  New fundamental evidence of non-classical structure in the combination of natural concepts , 2015, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[90]  Andrei Khrennikov,et al.  CHSH Inequality: Quantum Probabilities as Classical Conditional Probabilities , 2014, 1406.4886.

[91]  K. Michielsen,et al.  The photon identification loophole in EPRB experiments: computer models with single-wing selection , 2017, 1707.08307.

[92]  Richard D. Gill,et al.  Statistics, causality and Bell's theorem , 2012, 1207.5103.

[93]  H. De Raedt,et al.  Possible experience: From Boole to Bell , 2009, 0907.0767.

[94]  N. N. Vorob’ev Consistent Families of Measures and Their Extensions , 1962 .

[95]  W. Philipp,et al.  Bell's theorem and the problem of decidability between the views of Einstein and Bohr , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[96]  A. Hnilo,et al.  Kolmogorov complexity of sequences of random numbers generated in Bell's experiments , 2018, Physical Review A.

[97]  Marcelo G. Kovalsky,et al.  Low Dimension Dynamics in the EPRB Experiment with Random Variable Analyzers , 2007 .

[98]  Andrei Khrennikov,et al.  Nonlocality as well as rejection of realism are only sufficient (but non-necessary!) conditions for violation of Bell's inequality , 2009, Inf. Sci..

[99]  Luigi Accardi,et al.  Universality of the EPR-chameleon model , 2007 .

[100]  Marian Kupczynski,et al.  Causality and local determinism versus quantum nonlocality , 2013, 1312.0636.

[101]  Exploring inequality violations by classical hidden variables numerically , 2013, 1308.6752.

[102]  Albert Einstein,et al.  Physics and reality , 1936 .

[103]  K. Hess Bell’s Theorem and Instantaneous Influences at a Distance , 2018, 1805.04797.

[104]  S. Lou,et al.  Alice-Bob Physics: Coherent Solutions of Nonlocal KdV Systems , 2016, Scientific Reports.

[105]  R. Spekkens,et al.  Specker’s parable of the overprotective seer: A road to contextuality, nonlocality and complementarity , 2010 .

[106]  Kurt Jung,et al.  Violation of Bell’s inequality: Must the Einstein locality really be abandoned? , 2017 .

[107]  Andrei Khrennikov Bell's Inequality: Nonlocalty, “Death of Reality”, or Incompatibility of Random Variables? , 2007 .

[108]  S. Wehner,et al.  Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres , 2015, Nature.

[109]  Mónica B. Agüero,et al.  Time stamping in EPRB experiments: application on the test of non-ergodic theories , 2009 .

[110]  Karl Hess,et al.  Bell’s theorem: Critique of proofs with and without inequalities , 2005 .

[111]  A. Peres Unperformed experiments have no results , 1978 .

[112]  T. Nieuwenhuizen,et al.  Is the Contextuality Loophole Fatal for the Derivation of Bell Inequalities? , 2011 .