Sensitivity potential to a light flavor-changing scalar boson with DUNE and NA64μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{

[1]  S. Gninenko,et al.  Probing hidden sectors with a muon beam: Implication of spin-0 dark matter mediators for the muon ( g−2 ) anomaly and the validity of the Weiszäcker-Williams approach , 2023, Physical Review D.

[2]  Zhen Liu,et al.  Flavor-changing light bosons with accidental longevity , 2022, Journal of High Energy Physics.

[3]  A. Falcone,et al.  Deep underground neutrino experiment: DUNE , 2022, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment.

[4]  Jaehoon Yu,et al.  Probing new physics at DUNE operating in a beam-dump mode , 2022, Physical Review D.

[5]  S. Gninenko,et al.  Leptonic scalar portal: Origin of muon $g-2$ anomaly and dark matter? , 2022, 2202.04410.

[6]  M. Meucci MEG II experiment status and prospect , 2022, Proceedings of The 22nd International Workshop on Neutrinos from Accelerators — PoS(NuFact2021).

[7]  M. Francesconi,et al.  Towards a New μ→eγ Search with the MEG II Experiment: From Design to Commissioning , 2021, Universe.

[8]  H. Danielsson,et al.  SHADOWS (Search for Hidden And Dark Objects With the SPS) , 2021, 2110.08025.

[9]  J. I. Crespo-Anad'on,et al.  Low exposure long-baseline neutrino oscillation sensitivity of the DUNE experiment , 2021, 2109.01304.

[10]  M. Kirsanov,et al.  Probing hidden sectors with a muon beam: Total and differential cross sections for vector boson production in muon bremsstrahlung , 2021, Physical Review D.

[11]  S. C. Kim,et al.  Measurement of the Positive Muon Anomalous Magnetic Moment to 0.46 ppm. , 2021, Physical review letters.

[12]  M. Kirsanov,et al.  Fully Geant4 compatible package for the simulation of Dark Matter in fixed target experiments , 2021, Comput. Phys. Commun..

[13]  P. Schuster,et al.  The Search for Feebly Interacting Particles , 2020, Annual Review of Nuclear and Particle Science.

[14]  C. DeTar,et al.  The anomalous magnetic moment of the muon in the Standard Model , 2020, Physics Reports.

[15]  A. M. Guler,et al.  Measurement of the muon flux from 400 GeV/c protons interacting in a thick molybdenum/tungsten target , 2020, The European Physical Journal C.

[16]  T. Lippert,et al.  Leading hadronic contribution to the muon magnetic moment from lattice QCD , 2020, Nature.

[17]  V. P. Luzio,et al.  Deep Underground Neutrino Experiment (DUNE), Far Detector Technical Design Report, Volume III DUNE Far Detector Technical Coordination , 2020, 2002.03008.

[18]  Vladyslav Shtabovenko,et al.  FeynCalc 9.3: New features and improvements , 2020, Comput. Phys. Commun..

[19]  S. Tarem,et al.  Searching for muonic forces with the ATLAS detector , 2019, Physical Review D.

[20]  S. Gninenko,et al.  Combined search for light dark matter with electron and muon beams at NA64 , 2019, Physics Letters B.

[21]  S. Gninenko Proposal for an experiment to search for dark sector particles weakly coupled to muon at the SPS , 2019 .

[22]  Z. A. Ibrahim,et al.  COMET Phase-I technical design report , 2018, 1812.09018.

[23]  T. Gutsche,et al.  Bounds on lepton flavor violating physics and decays of neutral mesons from τ(μ)→3ℓ , ℓγγ -decays , 2018, Physical Review D.

[24]  S. Gninenko,et al.  Probing millicharged particles with NA64 experiment at CERN , 2018, Physical Review D.

[25]  T. Aushev,et al.  The Belle II Physics Book , 2018, Progress of Theoretical and Experimental Physics.

[26]  S. Gninenko,et al.  Deep inelastic e−τ and μ−τ conversion in the NA64 experiment at the CERN SPS , 2018, Physical Review D.

[27]  N. Tran,et al.  M3: a new muon missing momentum experiment to probe (g − 2)μ and dark matter at Fermilab , 2018, Journal of High Energy Physics.

[28]  M. Pospelov,et al.  Muon Beam Experiments to Probe the Dark Sector , 2017, 1701.07437.

[29]  B. Ananthanarayan Annual Review of Nuclear and Particle Science, 2015 , 2016 .

[30]  Alberto Guffanti,et al.  A facility to search for hidden particles at the CERN SPS: the SHiP physics case , 2015, Reports on progress in physics. Physical Society.

[31]  M. Hartz,et al.  Physics potential of a long-baseline neutrino oscillation experiment using a J-PARC neutrino beam and Hyper-Kamiokande , 2015, 1502.05199.

[32]  N. Dhanaraj,et al.  Mu2e Technical Design Report , 2015, 1501.05241.

[33]  Niklaus Berger,et al.  The Mu3e Experiment , 2014 .

[34]  T. Gutsche,et al.  Limits on lepton flavor violation from mu(-)-e(-) conversion , 2013, 1303.0596.

[35]  T. Gutsche,et al.  New bounds on lepton flavor violating decays of vector mesons and the z(0) boson , 2011, 1103.1317.

[36]  T. Gutsche,et al.  Lepton flavor violating decays of vector mesons , 2009, 0912.4562.

[37]  P. Schuster,et al.  New Fixed-Target Experiments to Search for Dark Gauge Forces , 2009, 0906.0580.

[38]  R. Hatcher,et al.  The GENIE * Neutrino Monte Carlo Generator , 2009, 0905.2517.

[39]  T. Gutsche,et al.  Scalar meson mediated nuclear μ- - e- conversion , 2005, hep-ph/0507033.

[40]  T. Gutsche,et al.  Effective lagrangian approach to nuclear mu(-)-e(-) conversion and the role of vector mesons , 2004, hep-ph/0405164.

[41]  A. Bodek,et al.  Observation of an anomalous number of dimuon events in a high energy neutrino beam. , 2001, Physical review letters.

[42]  D. H. White,et al.  Measurement of electron-neutrino electron elastic scattering , 2001, hep-ex/0101039.

[43]  A. Baroncelli,et al.  A Search for Decays of Heavy Neutrinos in the Mass Range 0.5-{GeV} to 2.8-{GeV} , 1986 .

[44]  A. Baroncelli,et al.  A search for decays of heavy neutrinos , 1983 .

[45]  W. Hager,et al.  and s , 2019, Shallow Water Hydraulics.

[46]  M. E. Galassi,et al.  GNU SCIENTI C LIBRARY REFERENCE MANUAL , 2005 .

[47]  K. M. Elovitz,et al.  Design for commissioning , 1994 .