Effects of tissue inhibitor of metalloproteinase 2 deficiency on aneurysm formation.

OBJECTIVE Matrix metalloproteinase (MMP)-2 has been shown to play a pivotal role in aortic aneurysm formation. Its activation requires formation of a trimolecular complex of MMP-2, tissue inhibitor of metalloproteinase-2 (TIMP-2), and membrane type 1 (MT1)-MMP, which is attached to the cell surface. At higher concentrations, TIMP-2 becomes an inhibitor of MMP-2. Thus, TIMP-2 could both augment and inhibit matrix degradation. This study was undertaken to define the net effect of TIMP-2 on matrix destruction and aneurysm formation. METHODS The abdominal aortas of wild-type and TIMP-2-deficient (TIMP-2 -/-) mice were exposed to 0.25 mol/L CaCl2 or 0.9% NaCl for 15 minutes after laparotomy. Aortic diameters were measured before treatment and 6 weeks after aneurysm induction. In addition, aortic tissues were studied for MMP-2 activation by zymography, and matrix structure was studied by connective tissue staining. RESULTS The aortic diameter increased in both wild-type and TIMP-2-/- mice. The increase in the TIMP-2 -/- mice was significantly smaller after CaCl2 treatment (51% +/- 3%) compared with the diameter of wild-type mice (67% +/- 4%). Connective staining of aortic sections from the CaCl2-treated mice revealed disruption and fragmentation of the medial elastic lamellae in both wild-type and TIMP-2 -/- mice. Zymographic analysis showed that active MMP-2 levels were decreased in TIMP-2 -/- aortas compared with wild-type mice. CONCLUSIONS Targeted deletion of TIMP-2 results in attenuation of aneurysm development. Despite its name as an inhibitor of MMPs, TIMP-2 promotes aortic enlargement in vivo, presumably through its role as a cofactor in the activation of MMP-2. CLINICAL RELEVANCE Abdominal aortic aneurysmal (AAA) disease is a potentially fatal disorder that screening studies have detected in 2% to 9% of the general population. Medical therapy designed to inhibit the progression of small aneurysms includes control of hypertension and smoking cessation; neither of these measures is of proven benefit. Effective and directed medical treatments for small AAAs await elucidation of key etiologic factors. Understanding precisely which molecules mediate AAA development, and blocking the activity of these molecules, could lead to important new therapies. Through our research, we have found that tissue inhibitor of metalloproteinase (TIMP)-2 has a role in this process in an experimental model of aortic aneurysms. We believe that TIMP-2 promotes aortic enlargement in vivo by activating matrix metalloproteinase 2.

[1]  P. Libby,et al.  Cytokine-stimulated human vascular smooth muscle cells synthesize a complement of enzymes required for extracellular matrix digestion. , 1994, Circulation research.

[2]  M. Thompson,et al.  Matrix metalloproteinase 8 (neutrophil collagenase) in the pathogenesis of abdominal aortic aneurysm , 2005, The British journal of surgery.

[3]  M. Bernardo,et al.  Differential Inhibition of Membrane Type 3 (MT3)-Matrix Metalloproteinase (MMP) and MT1-MMP by Tissue Inhibitor of Metalloproteinase (TIMP)-2 and TIMP-3 Regulates Pro-MMP-2 Activation* , 2004, Journal of Biological Chemistry.

[4]  M. Thompson,et al.  Ubiquitous Elevation of Matrix Metalloproteinase-2 Expression in the Vasculature of Patients With Abdominal Aneurysms , 2001, Circulation.

[5]  G. Ailawadi,et al.  Neutrophil Depletion Inhibits Experimental Abdominal Aortic Aneurysm Formation , 2005, Circulation.

[6]  W. Pearce,et al.  Enhanced abdominal aortic aneurysm in TIMP-1-deficient mice. , 2005, The Journal of surgical research.

[7]  S. Shapiro,et al.  Targeted gene disruption of matrix metalloproteinase-9 (gelatinase B) suppresses development of experimental abdominal aortic aneurysms. , 2000, The Journal of clinical investigation.

[8]  C. Overall,et al.  Cellular Activation of MMP-2 (Gelatinase A) by MT2-MMP Occurs via a TIMP-2-independent Pathway* , 2001, The Journal of Biological Chemistry.

[9]  T. Greiner,et al.  Key Roles of CD4+ T Cells and IFN-γ in the Development of Abdominal Aortic Aneurysms in a Murine Model1 , 2004, The Journal of Immunology.

[10]  Robert P. Thompson,et al.  Effects of Deletion of the Tissue Inhibitor of Matrix Metalloproteinases-1 Gene on the Progression of Murine Thoracic Aortic Aneurysms , 2004, Circulation.

[11]  P. Libby,et al.  Evidence for altered balance between matrix metalloproteinases and their inhibitors in human aortic diseases. , 1997, Circulation.

[12]  A. Strongin,et al.  Mechanism Of Cell Surface Activation Of 72-kDa Type IV Collagenase , 1995, The Journal of Biological Chemistry.

[13]  R. Mecham,et al.  Production and localization of 92-kilodalton gelatinase in abdominal aortic aneurysms. An elastolytic metalloproteinase expressed by aneurysm-infiltrating macrophages. , 1995, The Journal of clinical investigation.

[14]  J. Greene,et al.  Molecular Cloning and Characterization of Human Tissue Inhibitor of Metalloproteinase 4* , 1996, The Journal of Biological Chemistry.

[15]  D. Carey,et al.  Expression of Matrix Metalloproteinases and TIMPs in Human Abdominal Aortic Aneurysms , 1998, Annals of vascular surgery.

[16]  Mark D. Huffman,et al.  Expression and localization of macrophage elastase (matrix metalloproteinase-12) in abdominal aortic aneurysms. , 1998, The Journal of clinical investigation.

[17]  P. Slocombe,et al.  Tissue inhibitor of metalloproteinases-2 inhibits the activation of 72 kDa progelatinase by fibroblast membranes. , 1991, Biochimica et biophysica acta.

[18]  B. Olsen,et al.  The gene structure of tissue inhibitor of metalloproteinases (TIMP)-3 and its inhibitory activities define the distinct TIMP gene family. , 1996, The Journal of biological chemistry.

[19]  Motoharu Seiki,et al.  A matrix metalloproteinase expressed on the surface of invasive tumour cells , 1994, Nature.

[20]  J. Elefteriades,et al.  Increased tissue microarray matrix metalloproteinase expression favors proteolysis in thoracic aortic aneurysms and dissections. , 2004, The Annals of thoracic surgery.

[21]  Y. Takanashi,et al.  Decreased Tissue Inhibitor of Metalloproteinase-2/Matrix Metalloproteinase Ratio in the Acute Phase of Aortic Dissection , 2004, Surgery Today.

[22]  Timothy C Greiner,et al.  Matrix metalloproteinases 2 and 9 work in concert to produce aortic aneurysms. , 2002, The Journal of clinical investigation.

[23]  B. Baxter,et al.  Matrix metalloproteinase-2 production and its binding to the matrix are increased in abdominal aortic aneurysms. , 1998, Arteriosclerosis, thrombosis, and vascular biology.

[24]  P. Stephens,et al.  Sequence of human tissue inhibitor of metalloproteinases and its identity to erythroid-potentiating activity , 1985, Nature.

[25]  Z. Werb,et al.  Secretion of metalloproteinases by stimulated capillary endothelial cells. II. Expression of collagenase and stromelysin activities is regulated by endogenous inhibitors. , 1986, The Journal of biological chemistry.

[26]  W. Pearce,et al.  In situ localization and quantification of mRNA for 92-kD type IV collagenase and its inhibitor in aneurysmal, occlusive, and normal aorta. , 1995, Arteriosclerosis, thrombosis, and vascular biology.

[27]  É. Allaire,et al.  Local overexpression of TIMP-1 prevents aortic aneurysm degeneration and rupture in a rat model. , 1998, The Journal of clinical investigation.

[28]  L. Liotta,et al.  Tissue inhibitor of metalloproteinase (TIMP-2). A new member of the metalloproteinase inhibitor family. , 1989, The Journal of biological chemistry.

[29]  K. Angquist,et al.  Proteolysis of the abdominal aortic aneurysm wall and the association with rupture. , 2002, European journal of vascular and endovascular surgery : the official journal of the European Society for Vascular Surgery.

[30]  M. Yamagishi,et al.  Application of real-time RT-PCR to quantifying gene expression of matrix metalloproteinases and tissue inhibitors of metalloproteinases in human abdominal aortic aneurysm. , 2004, Atherosclerosis.

[31]  W. Pearce,et al.  In situ localization and quantification of seventy-two-kilodalton type IV collagenase in aneurysmal, occlusive, and normal aorta. , 1995, Journal of vascular surgery.

[32]  P. Soloway,et al.  TIMP-2 Is Required for Efficient Activation of proMMP-2 in Vivo * , 2000, The Journal of Biological Chemistry.