Investigation of LRS dependence on the retention of HRS in CBRAM

[1]  J. Cluzel,et al.  Impact of SET and RESET conditions on CBRAM high temperature data retention , 2014, 2014 IEEE International Reliability Physics Symposium.

[2]  Zongliang Huo,et al.  Gate induced resistive switching in 1T1R structure with improved uniformity and better data retention , 2014, 2014 IEEE 6th International Memory Workshop (IMW).

[3]  S. Maikap,et al.  Enhanced resistive switching memory characteristics and mechanism using a Ti nanolayer at the W/TaOx interface , 2014, Nanoscale Research Letters.

[4]  J. Guy,et al.  Investigation of the physical mechanisms governing data-retention in down to 10nm nano-trench Al2O3/CuTeGe conductive bridge RAM (CBRAM) , 2013, 2013 IEEE International Electron Devices Meeting.

[5]  S. Maikap,et al.  Retraction: Enhanced resistive switching memory characteristics and mechanism using a Ti nanolayer at the W/TaOx interface , 2013, Nanoscale Research Letters.

[6]  Amit Prakash,et al.  TaOx-based resistive switching memories: prospective and challenges , 2013, Nanoscale Research Letters.

[7]  Malgorzata Jurczak,et al.  A Thermally Stable and High-Performance 90-nm ${\rm Al}_{2}{\rm O}_{3}\backslash{\rm Cu}$-Based 1T1R CBRAM Cell , 2013, IEEE Transactions on Electron Devices.

[8]  W. Tsai,et al.  High-Performance Programmable Metallization Cell Memory With the Pyramid-Structured Electrode , 2013, IEEE Electron Device Letters.

[9]  S. Muraoka,et al.  Comprehensive understanding of conductive filament characteristics and retention properties for highly reliable ReRAM , 2013, 2013 Symposium on VLSI Technology.

[10]  T. Takagi,et al.  Conductive Filament Scaling of ${\rm TaO}_{\rm x}$ Bipolar ReRAM for Improving Data Retention Under Low Operation Current , 2013, IEEE Transactions on Electron Devices.

[11]  L. Goux,et al.  Endurance/Retention Trade-off on $\hbox{HfO}_{2}/\hbox{Metal}$ Cap 1T1R Bipolar RRAM , 2013, IEEE Transactions on Electron Devices.

[12]  J Joshua Yang,et al.  Memristive devices for computing. , 2013, Nature nanotechnology.

[13]  Yu-Lun Chueh,et al.  Resistive switching of Au/ZnO/Au resistive memory: an in situ observation of conductive bridge formation , 2012, Nanoscale Research Letters.

[14]  Frederick T. Chen,et al.  Excellent resistive memory characteristics and switching mechanism using a Ti nanolayer at the Cu/TaOx interface , 2012, Nanoscale Research Letters.

[15]  S. Balatti,et al.  Evidence for Voltage-Driven Set/Reset Processes in Bipolar Switching RRAM , 2012, IEEE Transactions on Electron Devices.

[16]  Z. Wei,et al.  Retention Model for High-Density ReRAM , 2012, 2012 4th IEEE International Memory Workshop.

[17]  Qi Liu,et al.  Real‐Time Observation on Dynamic Growth/Dissolution of Conductive Filaments in Oxide‐Electrolyte‐Based ReRAM , 2012, Advanced materials.

[18]  Y. Liu,et al.  Linear Scaling of Reset Current Down to 22-nm Node for a Novel $\hbox{Cu}_{x}\hbox{Si}_{y}\hbox{O}$ RRAM , 2012, IEEE Electron Device Letters.

[19]  R. Williams,et al.  Sub-nanosecond switching of a tantalum oxide memristor , 2011, Nanotechnology.

[20]  Daniele Ielmini,et al.  Filament diffusion model for simulating reset and retention processes in RRAM , 2011 .

[21]  Shimeng Yu,et al.  Compact Modeling of Conducting-Bridge Random-Access Memory (CBRAM) , 2011, IEEE Transactions on Electron Devices.

[22]  T. Tang,et al.  Improvement of Resistive Switching Uniformity by Introducing a Thin GST Interface Layer , 2010, IEEE Electron Device Letters.

[23]  D. Ielmini,et al.  Size-Dependent Retention Time in NiO-Based Resistive-Switching Memories , 2010, IEEE Electron Device Letters.

[24]  R. Dittmann,et al.  Redox‐Based Resistive Switching Memories – Nanoionic Mechanisms, Prospects, and Challenges , 2009, Advanced materials.

[25]  R. Bruchhaus,et al.  Investigation of the Reliability Behavior of Conductive-Bridging Memory Cells , 2009, IEEE Electron Device Letters.

[26]  Qi Liu,et al.  On the resistive switching mechanisms of Cu/ZrO2:Cu/Pt , 2008 .

[27]  Z. Wei,et al.  Highly reliable TaOx ReRAM and direct evidence of redox reaction mechanism , 2008, 2008 IEEE International Electron Devices Meeting.

[28]  R. Symanczyk,et al.  Conductive bridging RAM (CBRAM): an emerging non-volatile memory technology scalable to sub 20nm , 2005, IEEE InternationalElectron Devices Meeting, 2005. IEDM Technical Digest..