Large-Scale Lattice Gas Monte Carlo Simulations for the Generalized Ising Model

We present an efficient parallel algorithm for lattice gas Monte Carlo simulations in the framework of an Ising model that allows arbitrary interaction on any lattice, a model often called a cluster expansion. Thermodynamic Monte Carlo simulations strive for the equilibrium properties of a system by exchanging atoms over a long range, while preserving detailed balance. This long-range exchange of atoms renders other frequent parallelization techniques, like domain decomposition, unfavorable due to excessive communication cost. Our ansatz, based on the Metropolis algorithm, minimizes communication between parallel processes. We present this new "partial sequence preserving'' (PSP) algorithm, as well as benchmark data for a physical alloy system (NiAl) comprised of one billion atoms.

[1]  T. D. Lee,et al.  Statistical Theory of Equations of State and Phase Transitions. II. Lattice Gas and Ising Model , 1952 .

[2]  Wolverton,et al.  Cluster expansions of alloy energetics in ternary intermetallics. , 1994, Physical review. B, Condensed matter.

[3]  R. Forcade,et al.  UNCLE: a code for constructing cluster expansions for arbitrary lattices with minimal user-input , 2009 .

[4]  L. Onsager Crystal statistics. I. A two-dimensional model with an order-disorder transition , 1944 .

[5]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[6]  F. Ducastelle Order and Phase Stability in Alloys , 1991 .

[7]  D. Fontaine Cluster Approach to Order-Disorder Transformations in Alloys , 1994 .

[8]  S. Zaleski,et al.  Lattice-gas models of phase separation: interfaces, phase transitions, and multiphase flow , 1994 .

[9]  A. V. D. Walle,et al.  A complete representation of structure-property relationships in crystals. , 2008 .

[10]  A. B. Bortz,et al.  A new algorithm for Monte Carlo simulation of Ising spin systems , 1975 .

[11]  A. Zunger,et al.  Predicting the size- and temperature-dependent shapes of precipitates in Al–Zn alloys , 2000 .

[12]  Frisch,et al.  Lattice gas automata for the Navier-Stokes equations. a new approach to hydrodynamics and turbulence , 1989 .

[13]  Gus L. W. Hart,et al.  Generating derivative structures: Algorithm and applications , 2008, 0804.3544.

[14]  Ceder,et al.  hcp Ising model in the cluster-variation approximation. , 1993, Physical review. B, Condensed matter.

[15]  E. Ising Beitrag zur Theorie des Ferromagnetismus , 1925 .

[16]  Gus L. W. Hart,et al.  Reinterpreting the Cu–Pd phase diagram based on new ground-state predictions , 2007 .

[17]  Daniel H. Rothman,et al.  Lattice-Gas Cellular Automata: Simple Models of Complex Hydrodynamics , 1997 .

[18]  R. Forcade,et al.  Generating derivative structures from multilattices: Algorithm and application to hcp alloys , 2009 .

[19]  Jean-Pierre Rivet,et al.  Lattice Gas Hydrodynamics , 1987 .

[20]  A. Jansen,et al.  Lattice gas model for CO electrooxidation on Pt-Ru bimetallic surfaces , 1999 .

[21]  A. van de Walle,et al.  Automating First-Principles Phase Diagram Calculations , 2002 .

[22]  Gus L. W. Hart,et al.  Nonmetal ordering in TiC1-xNx : Ground-state structure and the effects of finite temperature , 2005 .

[23]  F. Ducastelle,et al.  Generalized cluster description of multicomponent systems , 1984 .

[24]  Alex Zunger,et al.  First-Principles Statistical Mechanics of Semiconductor Alloys and Intermetallic Compounds , 1994 .

[25]  Gus L. W. Hart,et al.  Using genetic algorithms to map first-principles results to model Hamiltonians: Application to the generalized Ising model for alloys , 2005 .

[26]  G. Doolen Lattice gas methods: theory, applications, and hardware , 1991 .

[27]  Matthias Scheffler,et al.  First-principles statistical mechanics study of the stability of a subnanometer thin surface oxide in reactive environments: CO oxidation at Pd(100). , 2007, Physical review letters.

[28]  Anton Van der Ven,et al.  Vacancy mediated substitutional diffusion in binary crystalline solids , 2010 .

[29]  Gus L. W. Hart,et al.  Algorithm for Generating Derivative Structures , 2008 .

[30]  A. Zunger,et al.  First-principles kinetic theory of precipitate evolution in Al-Zn alloys , 2002 .