Graded Control of Microtubule Severing by Tubulin Glutamylation

[1]  A. Brech,et al.  Spastin and ESCRT-III coordinate mitotic spindle disassembly and nuclear envelope sealing , 2015, Nature.

[2]  G. Lander,et al.  Multivalent Microtubule Recognition by Tubulin Tyrosine Ligase-like Family Glutamylases , 2015, Cell.

[3]  C. P. Garnham,et al.  Writing and Reading the Tubulin Code* , 2015, The Journal of Biological Chemistry.

[4]  R. Heald,et al.  Glutamylation of Nap1 modulates histone H1 dynamics and chromosome condensation in Xenopus , 2015, The Journal of cell biology.

[5]  H. Dyson,et al.  Intrinsically disordered proteins in cellular signalling and regulation , 2014, Nature Reviews Molecular Cell Biology.

[6]  D. Sept,et al.  Genome-wide Analysis Reveals Novel and Discrete Functions for Tubulin Carboxy-Terminal Tails , 2014, Current Biology.

[7]  N. Grigorieff,et al.  Molecular Basis for Age-Dependent Microtubule Acetylation by Tubulin Acetyltransferase , 2014, Cell.

[8]  R. Vale,et al.  Regulation of microtubule motors by tubulin isotypes and posttranslational modifications , 2014, Nature Cell Biology.

[9]  D. Ehrhardt,et al.  A Mechanism for Reorientation of Cortical Microtubule Arrays Driven by Microtubule Severing , 2013, Science.

[10]  E. Mandelkow,et al.  Amyloid‐β oligomers induce synaptic damage via Tau‐dependent microtubule severing by TTLL6 and spastin , 2013, The EMBO journal.

[11]  Y. Yamakita,et al.  Overexpression, purification, and functional analysis of recombinant human tubulin dimer , 2013, FEBS letters.

[12]  T. Eckert,et al.  Spastin's Microtubule-Binding Properties and Comparison to Katanin , 2012, PloS one.

[13]  Kavitha S. Rao,et al.  Normal spastin gene dosage is specifically required for axon regeneration. , 2012, Cell reports.

[14]  Anthony A. Hyman,et al.  One-step purification of assembly-competent tubulin from diverse eukaryotic sources , 2012, Molecular biology of the cell.

[15]  G. Piszczek,et al.  Crystal Structures of Tubulin Acetyltransferase Reveal a Conserved Catalytic Core and the Plasticity of the Essential N Terminus* , 2012, The Journal of Biological Chemistry.

[16]  Yishi Jin,et al.  Kinesin-13 and tubulin posttranslational modifications regulate microtubule growth in axon regeneration. , 2012, Developmental cell.

[17]  A. Tsubouchi,et al.  Katanin p60-like1 Promotes Microtubule Growth and Terminal Dendrite Stability in the Larval Class IV Sensory Neurons of Drosophila , 2012, The Journal of Neuroscience.

[18]  Antonina Roll-Mecak,et al.  The chemical complexity of cellular microtubules: Tubulin post‐translational modification enzymes and their roles in tuning microtubule functions , 2012, Cytoskeleton.

[19]  Kevin W Eliceiri,et al.  NIH Image to ImageJ: 25 years of image analysis , 2012, Nature Methods.

[20]  M. Goodman,et al.  Posttranslational Acetylation of α-Tubulin Constrains Protofilament Number in Native Microtubules , 2012, Current Biology.

[21]  T. Eckert,et al.  Subunit Interactions and Cooperativity in the Microtubule-severing AAA ATPase Spastin* , 2012, The Journal of Biological Chemistry.

[22]  Colin A. Johnson,et al.  CEP41 is mutated in Joubert syndrome and is required for tubulin glutamylation at the cilium , 2011, Nature Genetics.

[23]  F. Nédélec,et al.  Katanin Contributes to Interspecies Spindle Length Scaling in Xenopus , 2011, Cell.

[24]  G. Piszczek,et al.  Tubulin tyrosine ligase structure reveals adaptation of an ancient fold to bind and modify tubulin , 2011, Nature Structural &Molecular Biology.

[25]  F. McNally,et al.  The spindle assembly function of Caenorhabditis elegans katanin does not require microtubule-severing activity , 2011, Molecular biology of the cell.

[26]  Thomas Müller-Reichert,et al.  Cortical Constriction During Abscission Involves Helices of ESCRT-III–Dependent Filaments , 2011, Science.

[27]  N. Bec,et al.  A Family of Protein-Deglutamylating Enzymes Associated with Neurodegeneration , 2010, Cell.

[28]  Peter E. Wright,et al.  Graded enhancement of p53 binding to CREB-binding protein (CBP) by multisite phosphorylation , 2010, Proceedings of the National Academy of Sciences.

[29]  Carsten Janke,et al.  Tubulin post-translational modifications: encoding functions on the neuronal microtubule cytoskeleton , 2010, Trends in Neurosciences.

[30]  Abhijit Banerjee,et al.  High-resolution separation of tubulin monomers on polyacrylamide minigels. , 2010, Analytical biochemistry.

[31]  D. Gerlich,et al.  Tubulin polyglutamylation stimulates spastin-mediated microtubule severing , 2010, The Journal of cell biology.

[32]  P. Baas,et al.  Acetylation of Microtubules Influences Their Sensitivity to Severing by Katanin in Neurons and Fibroblasts , 2010, The Journal of Neuroscience.

[33]  F. McNally,et al.  Microtubule-severing enzymes. , 2010, Current opinion in cell biology.

[34]  M. Wagenbach,et al.  Motor-dependent microtubule disassembly driven by tubulin tyrosination , 2009, The Journal of cell biology.

[35]  J. Singer,et al.  The Cul3/Klhdc5 E3 Ligase Regulates p60/Katanin and Is Required for Normal Mitosis in Mammalian Cells* , 2009, Journal of Biological Chemistry.

[36]  Y. Jan,et al.  Drosophila IKK-related kinase Ik2 and Katanin p60-like 1 regulate dendrite pruning of sensory neuron during metamorphosis , 2009, Proceedings of the National Academy of Sciences.

[37]  M. Setou,et al.  Recombinant mammalian tubulin polyglutamylase TTLL7 performs both initiation and elongation of polyglutamylation on beta-tubulin through a random sequential pathway. , 2009, Biochemistry.

[38]  L. Qiang,et al.  The microtubule-severing proteins spastin and katanin participate differently in the formation of axonal branches. , 2008, Molecular biology of the cell.

[39]  A. van Dorsselaer,et al.  Polyglutamylation Is a Post-translational Modification with a Broad Range of Substrates* , 2008, Journal of Biological Chemistry.

[40]  Ronald D. Vale,et al.  Structural basis of microtubule severing by the hereditary spastic paraplegia protein spastin , 2008, Nature.

[41]  J. Gaertig,et al.  Katanin regulates dynamics of microtubules and biogenesis of motile cilia , 2007, The Journal of cell biology.

[42]  Jacek Gaertig,et al.  The Tubulin Code , 2007, Cell cycle.

[43]  C. Janke,et al.  A targeted multienzyme mechanism for selective microtubule polyglutamylation. , 2007, Molecular cell.

[44]  G. C. Rogers,et al.  Three microtubule severing enzymes contribute to the “Pacman-flux” machinery that moves chromosomes , 2007, The Journal of cell biology.

[45]  R. Vale,et al.  Making more microtubules by severing: a common theme of noncentrosomal microtubule arrays? , 2006, The Journal of cell biology.

[46]  T. Mitchison,et al.  Meiotic Spindle: Sculpted by Severing , 2006, Current Biology.

[47]  M. Setou,et al.  TTLL7 Is a Mammalian β-Tubulin Polyglutamylase Required for Growth of MAP2-positive Neurites* , 2006, Journal of Biological Chemistry.

[48]  A. Hyman,et al.  Katanin Disrupts the Microtubule Lattice and Increases Polymer Number in C. elegans Meiosis , 2006, Current Biology.

[49]  L. Kay,et al.  Variable Control of Ets-1 DNA Binding by Multiple Phosphates in an Unstructured Region , 2005, Science.

[50]  R. Vale,et al.  The Drosophila Homologue of the Hereditary Spastic Paraplegia Protein, Spastin, Severs and Disassembles Microtubules , 2005, Current Biology.

[51]  G. Gundersen,et al.  Linking axonal degeneration to microtubule remodeling by Spastin-mediated microtubule severing , 2005, The Journal of cell biology.

[52]  Dylan T Burnette,et al.  Mutations of Tubulin Glycylation Sites Reveal Cross-talk between the C Termini of α- and β-Tubulin and Affect the Ciliary Matrix in Tetrahymena* , 2005, Journal of Biological Chemistry.

[53]  K. Zinn,et al.  Drosophila Spastin Regulates Synaptic Microtubule Networks and Is Required for Normal Motor Function , 2004, PLoS biology.

[54]  K. Broadie,et al.  The Hereditary Spastic Paraplegia Gene, spastin, Regulates Microtubule Stability to Modulate Synaptic Structure and Function , 2004, Current Biology.

[55]  Chenggang Lu,et al.  The Caenorhabditis elegans microtubule-severing complex MEI-1/MEI-2 katanin interacts differently with two superficially redundant beta-tubulin isotypes. , 2003, Molecular biology of the cell.

[56]  Tony Pawson,et al.  Multisite phosphorylation of a CDK inhibitor sets a threshold for the onset of DNA replication , 2001, Nature.

[57]  C. Allis,et al.  Translating the Histone Code , 2001, Science.

[58]  P. Denoulet,et al.  Differential Binding Regulation of Microtubule-associated Proteins MAP1A, MAP1B, and MAP2 by Tubulin Polyglutamylation* , 2001, The Journal of Biological Chemistry.

[59]  P. Denoulet,et al.  Tubulin polyglutamylase: isozymic variants and regulation during the cell cycle in HeLa cells. , 1999, Journal of cell science.

[60]  Bertrand Fontaine,et al.  Spastin, a new AAA protein, is altered in the most frequent form of autosomal dominant spastic paraplegia , 1999, Nature Genetics.

[61]  R. Vale,et al.  Microtubule disassembly by ATP-dependent oligomerization of the AAA enzyme katanin. , 1999, Science.

[62]  A. Schneider,et al.  Posttranslational modifications of trichomonad tubulins; identification of multiple glutamylation sites , 1998, FEBS letters.

[63]  F. Gros,et al.  Interaction of kinesin motor domains with alpha- and beta-tubulin subunits at a tau-independent binding site. Regulation by polyglutamylation. , 1996, The Journal of biological chemistry.

[64]  F. Gros,et al.  Polyglutamylation of tubulin as a progressive regulator of in vitro interactions between the microtubule-associated protein Tau and tubulin. , 1994, Biochemistry.

[65]  R. Vale,et al.  Identification of katanin, an ATPase that severs and disassembles stable microtubules , 1993, Cell.

[66]  B. Eddé,et al.  Reversible polyglutamylation of alpha- and beta-tubulin and microtubule dynamics in mouse brain neurons. , 1993, Molecular biology of the cell.

[67]  B. Eddé,et al.  Distribution of glutamylated alpha and beta-tubulin in mouse tissues using a specific monoclonal antibody, GT335. , 1992, European journal of cell biology.

[68]  J. Rossier,et al.  Polyglutamylated alpha-tubulin can enter the tyrosination/detyrosination cycle. , 1992, Biochemistry.

[69]  G. Borisy,et al.  Differential turnover of tyrosinated and detyrosinated microtubules. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[70]  Marc W. Kirschner,et al.  Posttranslational modification and microtubule stability , 1987, The Journal of cell biology.

[71]  G. Gundersen,et al.  Distinct populations of microtubules: Tyrosinated and nontyrosinated alpha tubulin are distributed differently in vivo , 1984, Cell.

[72]  D. Raybin,et al.  An enzyme tyrosylating α-tubulin and its role in microtubule assembly , 1975 .

[73]  A. Roll-Mecak Intrinsically disordered tubulin tails: complex tuners of microtubule functions? , 2015, Seminars in cell & developmental biology.

[74]  C. P. Garnham,et al.  Generation of differentially modified microtubules using in vitro enzymatic approaches. , 2014, Methods in enzymology.

[75]  A. Roll-Mecak,et al.  In vitro microtubule severing assays. , 2013, Methods in molecular biology.

[76]  M. Magiera,et al.  Investigating tubulin posttranslational modifications with specific antibodies. , 2013, Methods in cell biology.

[77]  A. Akhmanova,et al.  Cell and molecular biology of microtubule plus end tracking proteins: end binding proteins and their partners. , 2010, International review of cell and molecular biology.

[78]  V. Redeker Mass spectrometry analysis of C-terminal posttranslational modifications of tubulins. , 2010, Methods in cell biology.

[79]  Dylan T Burnette,et al.  Mutations of tubulin glycylation sites reveal cross-talk between the C termini of alpha- and beta-tubulin and affect the ciliary matrix in Tetrahymena. , 2005, The Journal of biological chemistry.

[80]  M. Bornens,et al.  Glutamylation of centriole and cytoplasmic tubulin in proliferating non-neuronal cells. , 1998, Cell motility and the cytoskeleton.

[81]  U. Plessmann,et al.  Purification and characterization of basal apparatuses from a flagellate green alga. , 1997, Cell Motility and the Cytoskeleton.

[82]  K. Sullivan Structure and utilization of tubulin isotypes. , 1988, Annual review of cell biology.

[83]  D. Raybin,et al.  An enzyme tyrosylating alpha-tubulin and its role in microtubule assembly. , 1975, Biochemical and biophysical research communications.

[84]  Linda Rollman Journal of Biological Chemistry , 2022 .