Overestimation of marsh vulnerability to sea level rise

In this Perspective it is argued that coastal marsh vulnerability is often overstated because assessments generally neglect feedback processes known to accelerate soil building with sea level rise, as well as the potential for marshes to migrate inland.

[1]  J. Syvitski,et al.  Impact of Humans on the Flux of Terrestrial Sediment to the Global Coastal Ocean , 2005, Science.

[2]  Robert Costanza,et al.  The value of ecosystem services , 1998 .

[3]  Corinne Le Quéré,et al.  The challenge to keep global warming below 2 °C , 2013 .

[4]  P. V. Sundareshwar,et al.  RESPONSES OF COASTAL WETLANDS TO RISING SEA LEVEL , 2002 .

[5]  Chris J. Kennedy,et al.  The value of estuarine and coastal ecosystem services , 2011 .

[6]  M. Kirwan,et al.  Feedbacks between inundation, root production, and shoot growth in a rapidly submerging brackish marsh , 2012 .

[7]  Sergio Fagherazzi The ephemeral life of a salt marsh , 2013 .

[8]  L. Ward,et al.  VERTICAL ACCRETION IN MARSHES WITH VARYING RATES OF SEA LEVEL RISE , 1986 .

[9]  G. Chmura,et al.  Controls on salt marsh accretion: A test in salt marshes of Eastern Canada , 2004 .

[10]  Shing Yip Lee,et al.  Updated estimates of carbon accumulation rates in coastal marsh sediments , 2014 .

[11]  J. Day,et al.  Consequences of sea level rise: Implications from the mississippi delta , 1989 .

[12]  Lars Arge,et al.  Geographically Comprehensive Assessment of Salt-Meadow Vegetation-Elevation Relations Using LiDAR , 2011, Wetlands.

[13]  J. Bakker,et al.  Salt-marsh restoration: evaluating the success of de-embankments in north-west Europe , 2005 .

[14]  J. Hölemann,et al.  Seasonal modification of the Arctic Ocean intermediate water layer off the eastern Laptev Sea continental shelf break , 2009 .

[15]  Peter M. J. Herman,et al.  Spatial patterns, rates and mechanisms of saltmarsh cycles (Westerschelde, the Netherlands) , 2008 .

[16]  R. Stumpf,et al.  Expansion of Tidal Marsh in Response to Sea-Level Rise: Gulf Coast of Florida, USA , 2015, Estuaries and Coasts.

[17]  Kerrylee Rogers,et al.  Modelling wetland surface elevation dynamics and its application to forecasting the effects of sea-level rise on estuarine wetlands , 2012 .

[18]  A. Elmore,et al.  Elevation‐dependent surface elevation gain in a tidal freshwater marsh and implications for marsh persistence , 2014 .

[19]  D. Cahoon,et al.  A global standard for monitoring coastal wetland vulnerability to accelerated sea-level rise , 2013 .

[20]  Nathaniel B. Weston,et al.  Declining Sediments and Rising Seas: an Unfortunate Convergence for Tidal Wetlands , 2013, Estuaries and Coasts.

[21]  T. Dahl,et al.  Status and Trends of Wetlands in the Coastal Watersheds of the Conterminous United States 2004 to 2009 , 2013 .

[22]  M. Fenster,et al.  Coastal Impacts Due to Sea-Level Rise , 2008 .

[23]  Corinne Le Quéré,et al.  Climate Change 2013: The Physical Science Basis , 2013 .

[24]  Matthias Kudella,et al.  Wave attenuation over coastal salt marshes under storm surge conditions , 2014 .

[25]  F. Putz,et al.  SEA-LEVEL RISE AND COASTAL FOREST RETREAT ON THE WEST COAST OF FLORIDA, USA , 1999 .

[26]  G. Holland,et al.  Tropical cyclones and climate change , 2010, Tropical Cyclone Research and Review.

[27]  R. Lal,et al.  Recarbonization of the Biosphere , 2012, Springer Netherlands.

[28]  Alfred C. Redfield,et al.  Development of a New England Salt Marsh , 1972 .

[29]  Andrea Rinaldo,et al.  Landscape evolution in tidal embayments: Modeling the interplay of erosion, sedimentation, and vegetation dynamics , 2006 .

[30]  M. Kirwan,et al.  Dynamics of an Estuarine Forest and its Response to Rising Sea Level , 2007 .

[31]  Benjamin P. Horton,et al.  Holocene sea level database for the Atlantic coast of the United States , 2012 .

[32]  B. McKee,et al.  How a marsh is built from the bottom up , 2013 .

[33]  David H. Schoellhamer,et al.  Wetland Accretion Rate Model of Ecosystem Resilience (WARMER) and Its Application to Habitat Sustainability for Endangered Species in the San Francisco Estuary , 2014, Estuaries and Coasts.

[34]  Andrea Rinaldo,et al.  Biologically‐controlled multiple equilibria of tidal landforms and the fate of the Venice lagoon , 2007 .

[35]  R. Delaune,et al.  Sedimentation rates determined by 137Cs dating in a rapidly accreting salt marsh , 1978, Nature.

[36]  B. Blankespoor,et al.  Sea-Level Rise and Coastal Wetlands , 2014, AMBIO.

[37]  Marco Marani,et al.  Vegetation engineers marsh morphology through multiple competing stable states , 2013, Proceedings of the National Academy of Sciences.

[38]  Donald R. Cahoon,et al.  Relationships among Marsh Surface Topography, Hydroperiod, and Soil Accretion in a Deteriorating Louisiana Salt Marsh , 1995 .

[39]  Glenn R. Guntenspergen,et al.  Accelerated sea‐level rise – a response to Craft et al. , 2009 .

[40]  D. Cahoon,et al.  Elevated CO2 stimulates marsh elevation gain, counterbalancing sea-level rise , 2009, Proceedings of the National Academy of Sciences.

[41]  M. Lamers,et al.  Beyond dry feet? Experiences from a participatory water-management planning case in The Netherlands. , 2010 .

[42]  I. Overeem,et al.  Sinking deltas due to human activities , 2009 .

[43]  Daisuke Mizuno,et al.  A Semi-Empirical Approach to Projecting Future Sea-Level Rise , 2007 .

[44]  Andrea D'Alpaos,et al.  How does vegetation affect sedimentation on tidal marshes? Investigating particle capture and hydrodynamic controls on biologically mediated sedimentation , 2010 .

[45]  K. Wilson,et al.  Managing for change: wetland transitions under sea‐level rise and outcomes for threatened species , 2011 .

[46]  Benwei Shi,et al.  Wave Attenuation at a Salt Marsh Margin: A Case Study of an Exposed Coast on the Yangtze Estuary , 2011, Estuaries and Coasts.

[47]  M. Kirwan,et al.  Global climate changes recorded in coastal wetland sediments: Empirical observations linked to theoretical predictions , 2010 .

[48]  Bo Tian,et al.  Forecasting the effects of sea-level rise at Chongming Dongtan Nature Reserve in the Yangtze Delta, Shanghai, China , 2010 .

[49]  Li-Quan Zhang,et al.  Evaluation of the combined threat from sea-level rise and sedimentation reduction to the coastal wetlands in the Yangtze Estuary, China , 2014 .

[50]  L. Leonard Controls of sediment transport and deposition in an incised mainland marsh basin, southeastern North Carolina , 1997, Wetlands.

[51]  Luca Carniello,et al.  Morphological evolution of the Venice lagoon: Evidence from the past and trend for the future , 2009 .

[52]  S. Temmerman,et al.  Ecosystem-based coastal defence in the face of global change , 2013, Nature.

[53]  N. White,et al.  A 20th century acceleration in global sea‐level rise , 2006 .

[54]  Hugh P. Possingham,et al.  Tracking the rapid loss of tidal wetlands in the Yellow Sea , 2014 .

[55]  Robert J. Nicholls,et al.  Broad-scale modelling of coastal wetlands: what is required? , 2006, Hydrobiologia.

[56]  L. Deegan,et al.  Coastal eutrophication as a driver of salt marsh loss , 2012, Nature.

[57]  William H. Conner,et al.  Predicting the retreat and migration of tidal forests along the northern Gulf of Mexico under sea-level rise , 2010 .

[58]  Donald R. Cahoon,et al.  Coastal Wetland Vulnerability to Relative Sea-Level Rise: Wetland Elevation Trends and Process Controls , 2006 .

[59]  Maggi Kelly,et al.  Evaluating Tidal Marsh Sustainability in the Face of Sea-Level Rise: A Hybrid Modeling Approach Applied to San Francisco Bay , 2011, PloS one.

[60]  Jon French,et al.  Tidal marsh sedimentation and resilience to environmental change: Exploratory modelling of tidal, sea-level and sediment supply forcing in predominantly allochthonous systems , 2006 .

[61]  S. Temmerman,et al.  Sedimentation and response to sea-level rise of a restored marsh with reduced tidal exchange: Comparison with a natural tidal marsh , 2011 .

[62]  Michael Oppenheimer,et al.  The potential impacts of sea level rise on the coastal region of New Jersey, USA , 2008 .

[63]  R. Delaune,et al.  Marsh vertical accretion via vegetative growth , 2006 .

[64]  Gail L. Chmura,et al.  Assessing Coastal Squeeze of Tidal Wetlands , 2013 .

[65]  S. Fagherazzi,et al.  Critical width of tidal flats triggers marsh collapse in the absence of sea-level rise , 2013, Proceedings of the National Academy of Sciences.

[66]  Johan van de Koppel,et al.  Numerical models of salt marsh evolution: Ecological, geomorphic, and climatic factors , 2012, Reviews of Geophysics.

[67]  P. Wiberg,et al.  Flow and Sediment Transport on a Tidal Salt Marsh Surface , 2000 .

[68]  M. Bertness,et al.  Rapid shoreward encroachment of salt marsh cordgrass in response to accelerated sea-level rise , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[69]  Michael S. Kearney,et al.  Landsat imagery shows decline of coastal marshes in Chesapeake and Delaware Bays , 2002 .

[70]  Chen Wang,et al.  Does biogeomorphic feedback lead to abrupt shifts between alternative landscape states?: An empirical study on intertidal flats and marshes , 2013 .

[71]  J. Palutikof,et al.  Climate change 2007 : impacts, adaptation and vulnerability , 2001 .

[72]  Anny Cazenave,et al.  Comparing climate projections to observations up to 2011 , 2012 .

[73]  E. Swenson,et al.  Wetland Sedimentation from Hurricanes Katrina and Rita , 2006, Science.

[74]  Chad W. Higgins,et al.  Evapotranspiration: A process driving mass transport and energy exchange in the soil‐plant‐atmosphere‐climate system , 2012 .

[75]  D. Reed The response of coastal marshes to sea‐level rise: Survival or submergence? , 1995 .

[76]  James T. Morris,et al.  Modeling Tidal Marsh Distribution with Sea-Level Rise: Evaluating the Role of Vegetation, Sediment, and Upland Habitat in Marsh Resiliency , 2014, PloS one.

[77]  R. Costanza,et al.  Salt marsh zonal migration and ecosystem service change in response to global sea level rise: a case study from an urban region. , 2010 .

[78]  M. B. Machmuller,et al.  Forecasting the effects of accelerated sea‐level rise on tidal marsh ecosystem services , 2009 .

[79]  Wei-Jun Cai,et al.  Carbon sequestration in wetland dominated coastal systems—a global sink of rapidly diminishing magnitude , 2012 .

[80]  Thomas Slawig,et al.  Modeling the influence of changing storm patterns on the ability of a salt marsh to keep pace with sea level rise , 2013 .

[81]  D. Wal,et al.  Patterns, rates and possible causes of saltmarsh erosion in the Greater Thames area (UK) , 2004 .

[82]  Pieter Moonen,et al.  Impact of vegetation die‐off on spatial flow patterns over a tidal marsh , 2012 .

[83]  J. Clough,et al.  Potential Effects of Sea-Level Rise on Coastal Wetlands in Southeastern Louisiana , 2013 .

[84]  T. Hill,et al.  Coastal wetland response to sea level rise in Connecticut and New York , 2015 .

[85]  Joseph A. M. Smith The Role of Phragmites australis in Mediating Inland Salt Marsh Migration in a Mid-Atlantic Estuary , 2013, PloS one.

[86]  J. Morris,et al.  Assessment of Carbon Sequestration Potential in Coastal Wetlands , 2012 .

[87]  S. Temmerman,et al.  Limits on the adaptability of coastal marshes to rising sea level , 2010 .

[88]  Andrew C. Kemp Climate related sea-level variations over the past two millennia , 2012 .

[89]  M. Kirwan,et al.  Tidal wetland stability in the face of human impacts and sea-level rise , 2013, Nature.

[90]  I. Mendelssohn,et al.  Vegetation's importance in regulating surface elevation in a coastal salt marsh facing elevated rates of sea level rise , 2012 .

[91]  J. Carr,et al.  Dual role of salt marsh retreat: Long‐term loss and short‐term resilience , 2014 .

[92]  Jan P. Bakker,et al.  Wetlands and Natural Resource Management. Ecological Studies , 2006 .

[93]  A. Hussein Modeling of Sea-Level Rise and Deforestation in Submerging Coastal Ultisols of Chesapeake Bay , 2009 .

[94]  Johan van de Koppel,et al.  Self‐Organization and Vegetation Collapse in Salt Marsh Ecosystems , 2004, The American Naturalist.