Reduced-Basis Multifidelity Approach for Efficient Parametric Study of NACA Airfoils

Multifidelity methods are often used to reduce the cost of parameter space exploration, with applications to design optimization and uncertainty quantification. We present a multifidelity method to...

[1]  Karen Willcox,et al.  Parametric reduced-order models for probabilistic analysis of unsteady aerodynamic applications , 2007 .

[2]  Kenji Takeda,et al.  Multifidelity surrogate modeling of experimental and computational aerodynamic data sets , 2011 .

[3]  P. Sagaut,et al.  Building Efficient Response Surfaces of Aerodynamic Functions with Kriging and Cokriging , 2008 .

[4]  Boris Diskin,et al.  Grid Convergence for Turbulent Flows(Invited) , 2015 .

[5]  Leo Wai-Tsun Ng,et al.  Multifidelity approaches for optimization under uncertainty , 2014 .

[6]  Roger Ghanem,et al.  Stochastic model reduction for chaos representations , 2007 .

[7]  Andy J. Keane,et al.  Recent advances in surrogate-based optimization , 2009 .

[8]  Stefan Heinrich,et al.  Multilevel Monte Carlo Methods , 2001, LSSC.

[9]  R. A. Miller,et al.  Sequential kriging optimization using multiple-fidelity evaluations , 2006 .

[10]  Dongbin Xiu,et al.  A Stochastic Collocation Algorithm with Multifidelity Models , 2014, SIAM J. Sci. Comput..

[11]  P. Spalart A One-Equation Turbulence Model for Aerodynamic Flows , 1992 .

[12]  Akil C. Narayan,et al.  Practical error bounds for a non-intrusive bi-fidelity approach to parametric/stochastic model reduction , 2018, J. Comput. Phys..

[13]  Kenneth E. Jansen,et al.  A stabilized finite element method for the incompressible Navier–Stokes equations using a hierarchical basis , 2001 .

[14]  T. Tezduyar,et al.  Mesh Moving Techniques for Fluid-Structure Interactions With Large Displacements , 2003 .

[15]  Dongbin Xiu,et al.  Computational Aspects of Stochastic Collocation with Multifidelity Models , 2014, SIAM/ASA J. Uncertain. Quantification.

[16]  Yvon Maday,et al.  A Reduced-Basis Element Method , 2002, J. Sci. Comput..

[17]  Albert Cohen,et al.  Kolmogorov widths and low-rank approximations of parametric elliptic PDEs , 2015, Math. Comput..

[18]  Peter Z. G. Qian,et al.  Bayesian Hierarchical Modeling for Integrating Low-Accuracy and High-Accuracy Experiments , 2008, Technometrics.

[19]  Slawomir Koziel,et al.  Multi-fidelity design optimization of transonic airfoils using physics-based surrogate modeling and shape-preserving response prediction , 2010, J. Comput. Sci..

[20]  Roger Ghanem,et al.  Efficient solution of stochastic systems: Application to the embankment dam problem , 2007 .

[21]  Ming Gu,et al.  Efficient Algorithms for Computing a Strong Rank-Revealing QR Factorization , 1996, SIAM J. Sci. Comput..

[22]  Leo Wai-Tsun Ng,et al.  Multifidelity Uncertainty Quantification Using Non-Intrusive Polynomial Chaos and Stochastic Collocation , 2012 .

[23]  J.W. Bandler,et al.  Space mapping: the state of the art , 2004, IEEE Transactions on Microwave Theory and Techniques.

[24]  Habib N. Najm,et al.  Uncertainty Quantification and Polynomial Chaos Techniques in Computational Fluid Dynamics , 2009 .

[25]  Michael S. Eldred,et al.  Multi-fidelity Methods in Aerodynamic Robust Optimization , 2016 .

[26]  Raphael T. Haftka,et al.  Surrogate-based Analysis and Optimization , 2005 .

[27]  Michael B. Giles,et al.  Multilevel Monte Carlo Path Simulation , 2008, Oper. Res..

[28]  D. Krige A statistical approach to some basic mine valuation problems on the Witwatersrand, by D.G. Krige, published in the Journal, December 1951 : introduction by the author , 1951 .

[29]  Charbel Farhat,et al.  Nonlinear model order reduction based on local reduced‐order bases , 2012 .

[30]  Stefan Görtz,et al.  Alternative Cokriging Method for Variable-Fidelity Surrogate Modeling , 2012 .

[31]  Fabio Nobile,et al.  Stochastic Partial Differential Equations: Analysis and Computations a Multi Level Monte Carlo Method with Control Variate for Elliptic Pdes with Log- Normal Coefficients a Multi Level Monte Carlo Method with Control Variate for Elliptic Pdes with Log-normal Coefficients , 2022 .

[32]  Per-Gunnar Martinsson,et al.  On the Compression of Low Rank Matrices , 2005, SIAM J. Sci. Comput..

[33]  Gianluca Iaccarino,et al.  A low-rank control variate for multilevel Monte Carlo simulation of high-dimensional uncertain systems , 2016, J. Comput. Phys..

[34]  A. Forrester Black-box calibration for complex-system simulation , 2010, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.