Mixed Jacobi-spherical harmonic spectral method for Navier--Stokes equations

Mixed Jacobi-spherical harmonic spectral method is proposed for the Navier-Stokes equations in a ball. Its stability and convergence are proved. Numerical results demonstrate the efficiency of this approach. Some results on the mixed Jacobi-spherical harmonic approximation are established, which play important role in numerical analysis of spectral method in spherical geometry.

[1]  R. Temam Navier-Stokes Equations , 1977 .

[2]  Guy Dumas,et al.  A divergence-free spectral expansions method for three-dimensional flows in spherical-gap geometries , 1994 .

[3]  Weiming Cao,et al.  A pseudospectral method for vorticity equations on spherical surface , 1997 .

[4]  R. Courant,et al.  Methods of Mathematical Physics , 1962 .

[5]  Guo Ben-yu,et al.  Jacobi interpolation approximations and their applications to singular differential equations , 2001 .

[6]  A boundary parametric approximation to the linearized scalar potential magnetostatic field problem , 1985 .

[7]  R. Temam Sur l'approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionnaires (II) , 1969 .

[8]  B. Guo,et al.  Spectral Methods and Their Applications , 1998 .

[9]  A spectral method for the fluid flow with low Mach number on the spherical surface , 1995 .

[10]  Guo Ben-Yu,et al.  Combined finite element and pseudospectral method for the two-dimensional evolutionary Navier-Stokes equations , 1993 .

[11]  John P. Boyd,et al.  The Choice of Spectral Functions on a Sphere for Boundary and Eigenvalue Problems: A Comparison of Chebyshev, Fourier and Associated Legendre Expansions , 1978 .

[12]  Ole H. Hald,et al.  Convergence of Fourier Methods for Navier-Stokes Equations , 1981 .

[13]  D. Gottlieb,et al.  Numerical analysis of spectral methods : theory and applications , 1977 .

[14]  Monique Dauge,et al.  Spectral Methods for Axisymmetric Domains , 1999 .

[15]  P. Brandimarte Finite Difference Methods for Partial Differential Equations , 2006 .

[16]  R. Bellman On the boundedness of solutions of nonlinear differential and difference equations , 1947 .

[17]  D. Funaro Polynomial Approximation of Differential Equations , 1992 .

[18]  Alfio Quarteroni,et al.  Spectral and Pseudo-Spectral Approximations of the Navier–Stokes Equations , 1982 .

[19]  Guo Ben-Yu,et al.  Gegenbauer Approximation in Certain Hilbert Spaces and Its Applications to Singular Differential Equations , 1999 .

[20]  Guo Ben-yu,et al.  A spectral method for the vorticity equation on the surface , 1995 .

[21]  A. Chorin Numerical Solution of the Navier-Stokes Equations* , 1989 .

[22]  Jie Shen,et al.  Efficient Spectral-Galerkin Methods IV. Spherical Geometries , 1999, SIAM J. Sci. Comput..

[23]  Ben-Yu Guo,et al.  Jacobi Approximations in Certain Hilbert Spaces and Their Applications to Singular Differential Equations , 2000 .

[24]  P. Raviart,et al.  Finite Element Approximation of the Navier-Stokes Equations , 1979 .

[25]  G. Efstathiou A model of supernova feedback in galaxy formation , 2000, astro-ph/0002245.

[26]  Ben-yu Guo,et al.  Jacobi approximations in non-uniformly Jacobi-weighted Sobolev spaces , 2004, J. Approx. Theory.

[27]  P. Swarztrauber,et al.  A standard test set for numerical approximations to the shallow water equations in spherical geometry , 1992 .

[28]  T. A. Zang,et al.  Spectral methods for fluid dynamics , 1987 .