Optimization methods for computing global minima of nonconvex potential energy functions

The minimization of potential energy functions plays an important role in the determination of ground states or stable states of certain classes of molecular clusters and proteins. In this paper we introduce some of the most commonly used potential energy functions and discuss different optimization methods used in the minimization of nonconvex potential energy functions. A very complete bibliography is also given.

[1]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[2]  I. Z. Fisher,et al.  Statistical theory of liquids , 1964 .

[3]  M. Prueitt Computer Simulation of Molecular Dynamics. , 1971 .

[4]  K. Wilson The renormalization group: Critical phenomena and the Kondo problem , 1975 .

[5]  Peter A. Kollman,et al.  AMBER: Assisted model building with energy refinement. A general program for modeling molecules and their interactions , 1981 .

[6]  H. Berendsen,et al.  Computer simulation of the dynamics of hydrated protein crystals and its comparison with x-ray data. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[7]  J. Farges,et al.  Noncrystalline structure of argon clusters. I. Polyicosahedral structure of ArN clusters, 20 , 1983 .

[8]  M. Levitt Protein folding by restrained energy minimization and molecular dynamics. , 1983, Journal of molecular biology.

[9]  M. Karplus,et al.  CHARMM: A program for macromolecular energy, minimization, and dynamics calculations , 1983 .

[10]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[11]  Scott Kirkpatrick,et al.  Optimization by simulated annealing: Quantitative studies , 1984 .

[12]  J. Farges,et al.  Cluster models made of double icosahedron units , 1985 .

[13]  S. Nash Preconditioning of Truncated-Newton Methods , 1985 .

[14]  Francis Sullivan,et al.  Molecular dynamics on vector computers , 1985 .

[15]  J. Farges,et al.  Noncrystalline structure of argon clusters. II. Multilayer icosahedral structure of ArN clusters 50 , 1986 .

[16]  S. Patil Determination of polarizabilities and van der Waals constants , 1986 .

[17]  William Gropp,et al.  A Parallel Version of the Fast Multipole Method-Invited Talk , 1987, PPSC.

[18]  J. Northby Structure and binding of Lennard‐Jones clusters: 13≤N≤147 , 1987 .

[19]  Panos M. Pardalos,et al.  Constrained Global Optimization: Algorithms and Applications , 1987, Lecture Notes in Computer Science.

[20]  L. Wille Minimum-energy configurations of atomic clusters: new results obtained by simulated annealing , 1987 .

[21]  Leslie Greengard,et al.  A fast algorithm for particle simulations , 1987 .

[22]  H. C. Andersen,et al.  Molecular dynamics study of melting and freezing of small Lennard-Jones clusters , 1987 .

[23]  H. Scheraga,et al.  Monte Carlo-minimization approach to the multiple-minima problem in protein folding. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[24]  L. Greengard,et al.  A Fast Adaptive Multipole Algorithm for Particle Simulations , 1988 .

[25]  L. Greengard The Rapid Evaluation of Potential Fields in Particle Systems , 1988 .

[26]  D. Ferguson,et al.  Molecular mechanics conformational analysis of cyclononane using the RIPS method and comparison with quantum‐mechanical calculations , 1989 .

[27]  H. G. Petersen,et al.  Molecular dynamics on transputer arrays. I: Algorithm design, programming issues, timing experiments and scaling projections , 1989 .

[28]  Aimo A. Törn,et al.  Global Optimization , 1999, Science.

[29]  H. Scheraga,et al.  On the multiple-minima problem in the conformational analysis of molecules: deformation of the potential energy hypersurface by the diffusion equation method , 1989 .

[30]  J. Farges,et al.  Stability of relaxed Lennard-Jones models made of 500 to 6000 atoms , 1989 .

[31]  B. W. V. D. Waal Stability of face‐centered cubic and icosahedral Lennard‐Jones clusters , 1989 .

[32]  J. Farges,et al.  Comparison between icosahedral, decahedral and crystalline Lennard-Jones models containing 500 to 6000 atoms , 1989 .

[33]  D. Ferguson,et al.  A new approach to probing conformational space with molecular mechanics: Random incremental pulse search , 1989 .

[34]  Boyer Ll,et al.  Statics and dynamics of icosahedrally twinned and single-crystal fcc clusters. , 1990 .

[35]  D. Ferguson,et al.  Molecular mechanics calculations of several lanthanide complexes: An application of the random incremental pulse search , 1990 .

[36]  D. Hohl,et al.  Quantum molecular modeling with simulated annealing-A distributed processing and visualization application , 1990, Proceedings SUPERCOMPUTING '90.

[37]  H. Berendsen,et al.  COMPUTER-SIMULATION OF MOLECULAR-DYNAMICS - METHODOLOGY, APPLICATIONS, AND PERSPECTIVES IN CHEMISTRY , 1990 .

[38]  James Andrew McCammon,et al.  Parallelization of a molecular dynamics non-bonded force algorithm for MIMD architecture , 1990, Comput. Chem..

[39]  Daniel R. Ripoll,et al.  A parallel Monte Carlo search algorithm for the conformational analysis of proteins , 1990, Proceedings SUPERCOMPUTING '90.

[40]  S. Wilson,et al.  Applications of simulated annealing to peptides , 1990, Biopolymers.

[41]  C. DeLisi,et al.  Determining minimum energy conformations of polypeptides by dynamic programming , 1990, Biopolymers.

[42]  Jill P. Mesirov,et al.  An optimal hypercube direct N-body solver on the Connection Machine , 1990, Proceedings SUPERCOMPUTING '90.

[43]  Karplus,et al.  Protein folding bottlenecks: A lattice Monte Carlo simulation. , 1991, Physical review letters.

[44]  H. Scheraga,et al.  Performance of the diffusion equation method in searches for optimum structures of clusters of Lennard-Jones atoms , 1991 .

[45]  J. Kostrowicki,et al.  Diffusion equation method of global minimization: Performance for standard test functions , 1991 .

[46]  Harvey Gould,et al.  Molecular dynamics simulation of liquids on the Connection Machine , 1991 .

[47]  Richard H. Byrd,et al.  Parallel global optimization: numerical methods, dynamic scheduling methods, and application to molecular configuration , 1994 .

[48]  F. Richards,et al.  The protein folding problem. , 1991, Scientific American.

[49]  J. Skolnick,et al.  Static and dynamic properties of a new lattice model of polypeptide chains , 1991 .

[50]  J. Skolnick,et al.  Comparison of lattice Monte Carlo dynamics and Brownian dynamics folding pathways of α-helical hairpins , 1991 .

[51]  David Shalloway,et al.  Packet annealing: a deterministic method for global minimization , 1992 .

[52]  R. Somorjai Novel approach for computing the global minimum of proteins. 1. General concepts, methods, and approximations , 1991 .

[53]  Jill P. Mesirov,et al.  Parallel approaches to short range molecular dynamics simulations , 1991, Proceedings of the 1991 ACM/IEEE Conference on Supercomputing (Supercomputing '91).

[54]  David Shalloway,et al.  Application of the renormalization group to deterministic global minimization of molecular conformation energy functions , 1992, J. Glob. Optim..

[55]  M. Levitt,et al.  A lattice model for protein structure prediction at low resolution. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[56]  C. Floudas,et al.  A global optimization approach for Lennard‐Jones microclusters , 1992 .

[57]  Juan C. Meza,et al.  Do intelligent configuration search techniques outperform random search for large molecules , 1992 .

[58]  H. Scheraga,et al.  Application of the diffusion equation method for global optimization to oligopeptides , 1992 .

[59]  L. Piela,et al.  Mean field theory as a tool for intramolecular conformational optimization. 1. Tests on terminally-blocked alanine and met-enkephalin , 1992 .

[60]  D. Ferguson,et al.  New results on protein folding from simulated annealing , 1992 .

[61]  J. Haile Molecular Dynamics Simulation , 1992 .

[62]  Robert S. Maier,et al.  Minimizing the Lennard-Jones potential function on a massively parallel computer , 1992, ICS '92.

[63]  J. Ben Rosen,et al.  A discrete-continuous algorithm for molecular energy minimization , 1992, Proceedings Supercomputing '92.

[64]  Parallel Global Optimization Methods for Molecular Configuration Problems , 1993, PPSC.

[65]  Kenneth M. Merz,et al.  The application of the genetic algorithm to the minimization of potential energy functions , 1993, J. Glob. Optim..

[66]  Christodoulos A. Floudas,et al.  Global optimization for molecular conformation problems , 1993, Ann. Oper. Res..

[67]  K. Dill,et al.  The Protein Folding Problem , 1993 .

[68]  Thomas F. Coleman,et al.  Isotropic effective energy simulated annealing searches for low energy molecular cluster states , 1993, Comput. Optim. Appl..

[69]  Thomas F. Coleman,et al.  A parallel build-up algorithm for global energy minimizations of molecular clusters using effective energy simulated annealing , 1993, J. Glob. Optim..

[70]  Abdellah Salhi,et al.  Global Optimization: Deterministic Approaches (2nd Edition) , 1994 .

[71]  Christodoulos A Floudas,et al.  Global minimum potential energy conformations of small molecules , 1994, J. Glob. Optim..

[72]  Guoliang Xue,et al.  Molecular conformation on the CM-5 by parallel two-level simulated annealing , 1994, J. Glob. Optim..

[73]  Zhijun Wu,et al.  The Eeective Energy Transformation Scheme as a General Continuation Approach to Global Optimization with Application to Molecular Conformation , 2022 .