Isogeometric Boundary Elements in Electromagnetism: Rigorous Analysis, Fast Methods, and Examples

We present a new approach to three-dimensional electromagnetic scattering problems via fast isogeometric boundary element methods. Starting with an investigation of the theoretical setting around the electric field integral equation within the isogeometric framework, we show existence, uniqueness, and quasi-optimality of the isogeometric approach. For a fast and efficient computation, we then introduce and analyze an interpolation-based fast multipole method tailored to the isogeometric setting, which admits competitive algorithmic and complexity properties. This is followed by a series of numerical examples of industrial scope, together with a detailed presentation and interpretation of the results.

[1]  T. Rabczuk,et al.  A two-dimensional Isogeometric Boundary Element Method for elastostatic analysis , 2012 .

[2]  W. Hackbusch,et al.  H 2 -matrix approximation of integral operators by interpolation , 2002 .

[3]  C. Schwab,et al.  Quadrature for hp-Galerkin BEM in lR3 , 1997 .

[4]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[5]  S. Rjasanow,et al.  Matrix valued adaptive cross approximation , 2017 .

[6]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[7]  Helmut Harbrecht,et al.  Comparison of fast boundary element methods on parametric surfaces , 2013 .

[8]  C. Schwab,et al.  Boundary Element Methods , 2010 .

[9]  Ralf Hiptmair,et al.  A Coercive Combined Field Integral Equation for Electromagnetic Scattering , 2004, SIAM J. Numer. Anal..

[10]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.

[11]  W. Hackbusch,et al.  On the fast matrix multiplication in the boundary element method by panel clustering , 1989 .

[12]  Stefan Kurz,et al.  A fast isogeometric BEM for the three dimensional Laplace- and Helmholtz problems , 2017, 1708.09162.

[13]  Zeger Bontinck,et al.  Recent Advances of Isogeometric Analysis in Computational Electromagnetics , 2017, ArXiv.

[14]  Rafael Vázquez Hernández,et al.  An isogeometric boundary element method for electromagnetic scattering with compatible B-spline discretizations , 2017, J. Comput. Phys..

[15]  Giancarlo Sangalli,et al.  Mathematical analysis of variational isogeometric methods* , 2014, Acta Numerica.

[16]  Giancarlo Sangalli,et al.  Isogeometric Discrete Differential Forms in Three Dimensions , 2011, SIAM J. Numer. Anal..

[17]  Lucy Weggler High order boundary element methods , 2011 .

[18]  Thomas J. R. Hughes,et al.  Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .

[19]  Helmut Harbrecht,et al.  An interpolation‐based fast multipole method for higher‐order boundary elements on parametric surfaces , 2016 .

[20]  S. Börm Efficient Numerical Methods for Non-local Operators , 2010 .

[21]  Mario Bebendorf,et al.  Approximation of boundary element matrices , 2000, Numerische Mathematik.

[22]  Stefan Kurz,et al.  The adaptive cross-approximation technique for the 3D boundary-element method , 2002 .

[23]  Annalisa Buffa,et al.  Isogeometric analysis for electromagnetic scattering problems , 2014, 2014 International Conference on Numerical Electromagnetic Modeling and Optimization for RF, Microwave, and Terahertz Applications (NEMO).

[24]  W. Hackbusch,et al.  Hierarchical Matrices: Algorithms and Analysis , 2015 .

[25]  Xin Li,et al.  Hierarchical T-splines: Analysis-suitability, Bézier extraction, and application as an adaptive basis for isogeometric analysis , 2014, 1404.4346.

[26]  Leslie Greengard,et al.  A fast algorithm for particle simulations , 1987 .

[27]  Andrew F. Peterson Mapped Vector Basis Functions for Electromagnetic Integral Equations , 2006, Mapped Vector Basis Functions for Electromagnetic Integral Equations.

[28]  Klaus Gibermann,et al.  Multilevel approximation of boundary integral operators , 2001 .

[29]  Yiying Tong,et al.  Subdivision based isogeometric analysis technique for electric field integral equations for simply connected structures , 2015, J. Comput. Phys..

[30]  R. Hiptmair Finite elements in computational electromagnetism , 2002, Acta Numerica.

[31]  Alessandro Reali,et al.  GeoPDEs: A research tool for Isogeometric Analysis of PDEs , 2011, Adv. Eng. Softw..

[32]  T. Takahashi,et al.  An application of fast multipole method to isogeometric boundary element method for Laplace equation in two dimensions , 2012 .

[33]  I. Babuska Error-bounds for finite element method , 1971 .

[34]  Ludmil T. Zikatanov,et al.  Some observations on Babu\vs}ka and Brezzi theories , 2003, Numerische Mathematik.

[35]  L. Schumaker Spline Functions: Basic Theory , 1981 .

[36]  Thomas-Peter Fries,et al.  Isogeometric Boundary Element Analysis with elasto-plastic inclusions. Part 1: Plane problems , 2015, ArXiv.

[37]  Les A. Piegl,et al.  The NURBS Book , 1995, Monographs in Visual Communication.

[38]  R. Hiptmair,et al.  Galerkin Boundary Element Methods for Electromagnetic Scattering , 2003 .

[39]  S. Kurz,et al.  Bembel: The Fast Isogeometric Boundary Element C++ Library for Laplace, Helmholtz, and Electric Wave Equation , 2019, SoftwareX.

[40]  W. McLean Strongly Elliptic Systems and Boundary Integral Equations , 2000 .

[41]  Thomas-Peter Fries,et al.  Fast Isogeometric Boundary Element Method based on Independent Field Approximation , 2014, ArXiv.

[42]  M. Diligenti,et al.  New efficient assembly in Isogeometric Analysis for Symmetric Galerkin Boundary Element Method , 2017 .

[43]  Lucy Weggler Generalization of tangential trace spaces of H(curl,Ω) for curvilinear Lipschitz polyhedral domains Ω , 2014 .

[44]  C. Schwab,et al.  Boundary element methods for Maxwell's equations on non-smooth domains , 2002, Numerische Mathematik.

[45]  Klaus Giebermann,et al.  Multilevel Approximation of Boundary Integral Operators , 2001, Computing.

[46]  Michael Feischl,et al.  Optimal convergence for adaptive IGA boundary element methods for weakly-singular integral equations , 2015, Numerische Mathematik.

[47]  Ralf Hiptmair,et al.  Convergence of the Natural hp-BEM for the Electric Field Integral Equation on Polyhedral Surfaces , 2009, SIAM J. Numer. Anal..

[48]  Sebastian Schöps,et al.  Multipatch approximation of the de Rham sequence and its traces in isogeometric analysis , 2018, Numerische Mathematik.

[49]  Snorre H. Christiansen,et al.  The electric field integral equation on Lipschitz screens: definitions and numerical approximation , 2003, Numerische Mathematik.