Isogeometric Boundary Elements in Electromagnetism: Rigorous Analysis, Fast Methods, and Examples
暂无分享,去创建一个
Sebastian Schöps | Jürgen Dölz | Stefan Kurz | Felix Wolf | S. Schöps | S. Kurz | J. Dölz | Felix Wolf
[1] T. Rabczuk,et al. A two-dimensional Isogeometric Boundary Element Method for elastostatic analysis , 2012 .
[2] W. Hackbusch,et al. H 2 -matrix approximation of integral operators by interpolation , 2002 .
[3] C. Schwab,et al. Quadrature for hp-Galerkin BEM in lR3 , 1997 .
[4] T. Hughes,et al. Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .
[5] S. Rjasanow,et al. Matrix valued adaptive cross approximation , 2017 .
[6] D. A. Dunnett. Classical Electrodynamics , 2020, Nature.
[7] Helmut Harbrecht,et al. Comparison of fast boundary element methods on parametric surfaces , 2013 .
[8] C. Schwab,et al. Boundary Element Methods , 2010 .
[9] Ralf Hiptmair,et al. A Coercive Combined Field Integral Equation for Electromagnetic Scattering , 2004, SIAM J. Numer. Anal..
[10] Vivette Girault,et al. Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.
[11] W. Hackbusch,et al. On the fast matrix multiplication in the boundary element method by panel clustering , 1989 .
[12] Stefan Kurz,et al. A fast isogeometric BEM for the three dimensional Laplace- and Helmholtz problems , 2017, 1708.09162.
[13] Zeger Bontinck,et al. Recent Advances of Isogeometric Analysis in Computational Electromagnetics , 2017, ArXiv.
[14] Rafael Vázquez Hernández,et al. An isogeometric boundary element method for electromagnetic scattering with compatible B-spline discretizations , 2017, J. Comput. Phys..
[15] Giancarlo Sangalli,et al. Mathematical analysis of variational isogeometric methods* , 2014, Acta Numerica.
[16] Giancarlo Sangalli,et al. Isogeometric Discrete Differential Forms in Three Dimensions , 2011, SIAM J. Numer. Anal..
[17] Lucy Weggler. High order boundary element methods , 2011 .
[18] Thomas J. R. Hughes,et al. Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .
[19] Helmut Harbrecht,et al. An interpolation‐based fast multipole method for higher‐order boundary elements on parametric surfaces , 2016 .
[20] S. Börm. Efficient Numerical Methods for Non-local Operators , 2010 .
[21] Mario Bebendorf,et al. Approximation of boundary element matrices , 2000, Numerische Mathematik.
[22] Stefan Kurz,et al. The adaptive cross-approximation technique for the 3D boundary-element method , 2002 .
[23] Annalisa Buffa,et al. Isogeometric analysis for electromagnetic scattering problems , 2014, 2014 International Conference on Numerical Electromagnetic Modeling and Optimization for RF, Microwave, and Terahertz Applications (NEMO).
[24] W. Hackbusch,et al. Hierarchical Matrices: Algorithms and Analysis , 2015 .
[25] Xin Li,et al. Hierarchical T-splines: Analysis-suitability, Bézier extraction, and application as an adaptive basis for isogeometric analysis , 2014, 1404.4346.
[26] Leslie Greengard,et al. A fast algorithm for particle simulations , 1987 .
[27] Andrew F. Peterson. Mapped Vector Basis Functions for Electromagnetic Integral Equations , 2006, Mapped Vector Basis Functions for Electromagnetic Integral Equations.
[28] Klaus Gibermann,et al. Multilevel approximation of boundary integral operators , 2001 .
[29] Yiying Tong,et al. Subdivision based isogeometric analysis technique for electric field integral equations for simply connected structures , 2015, J. Comput. Phys..
[30] R. Hiptmair. Finite elements in computational electromagnetism , 2002, Acta Numerica.
[31] Alessandro Reali,et al. GeoPDEs: A research tool for Isogeometric Analysis of PDEs , 2011, Adv. Eng. Softw..
[32] T. Takahashi,et al. An application of fast multipole method to isogeometric boundary element method for Laplace equation in two dimensions , 2012 .
[33] I. Babuska. Error-bounds for finite element method , 1971 .
[34] Ludmil T. Zikatanov,et al. Some observations on Babu\vs}ka and Brezzi theories , 2003, Numerische Mathematik.
[35] L. Schumaker. Spline Functions: Basic Theory , 1981 .
[36] Thomas-Peter Fries,et al. Isogeometric Boundary Element Analysis with elasto-plastic inclusions. Part 1: Plane problems , 2015, ArXiv.
[37] Les A. Piegl,et al. The NURBS Book , 1995, Monographs in Visual Communication.
[38] R. Hiptmair,et al. Galerkin Boundary Element Methods for Electromagnetic Scattering , 2003 .
[39] S. Kurz,et al. Bembel: The Fast Isogeometric Boundary Element C++ Library for Laplace, Helmholtz, and Electric Wave Equation , 2019, SoftwareX.
[40] W. McLean. Strongly Elliptic Systems and Boundary Integral Equations , 2000 .
[41] Thomas-Peter Fries,et al. Fast Isogeometric Boundary Element Method based on Independent Field Approximation , 2014, ArXiv.
[42] M. Diligenti,et al. New efficient assembly in Isogeometric Analysis for Symmetric Galerkin Boundary Element Method , 2017 .
[43] Lucy Weggler. Generalization of tangential trace spaces of H(curl,Ω) for curvilinear Lipschitz polyhedral domains Ω , 2014 .
[44] C. Schwab,et al. Boundary element methods for Maxwell's equations on non-smooth domains , 2002, Numerische Mathematik.
[45] Klaus Giebermann,et al. Multilevel Approximation of Boundary Integral Operators , 2001, Computing.
[46] Michael Feischl,et al. Optimal convergence for adaptive IGA boundary element methods for weakly-singular integral equations , 2015, Numerische Mathematik.
[47] Ralf Hiptmair,et al. Convergence of the Natural hp-BEM for the Electric Field Integral Equation on Polyhedral Surfaces , 2009, SIAM J. Numer. Anal..
[48] Sebastian Schöps,et al. Multipatch approximation of the de Rham sequence and its traces in isogeometric analysis , 2018, Numerische Mathematik.
[49] Snorre H. Christiansen,et al. The electric field integral equation on Lipschitz screens: definitions and numerical approximation , 2003, Numerische Mathematik.