An optimal method for fractional heat conduction problem backward in time

In this article, we consider a fractional order backward heat conduction problem in two-dimensional space which is associated with a deblurring problem. The problem is seriously ill-posed. We propose an optimal regularization method to solve the problem in the presence of noisy data, and obtain the optimal stability error estimation. A deblurring and denoising experiment shows that the optimal method is comparable with the Tikhonov method.

[1]  Ulrich Tautenhahn Optimal Stable Solution of Cauchy Problems for Elliptic Equations , 1996 .

[2]  H DinhNho,et al.  A mollification method for ill-posed problems , 1994 .

[3]  D. Hào,et al.  A mollification method for ill-posed problems , 1994 .

[4]  Benny Y. C. Hon,et al.  Discretized Tikhonov regularization by reproducing kernel Hilbert space for backward heat conduction problem , 2011, Adv. Comput. Math..

[5]  Wen Chen,et al.  An Intuitive Study of Fractional Derivative Modeling and Fractional Quantum in Soft Matter , 2008 .

[6]  S. Holm,et al.  Fractional Laplacian time-space models for linear and nonlinear lossy media exhibiting arbitrary frequency power-law dependency. , 2004, The Journal of the Acoustical Society of America.

[7]  Chein-Shan Liu Group preserving scheme for backward heat conduction problems , 2004 .

[8]  Alfred S. Carasso,et al.  Overcoming Ho¨lder continuity in ill-posed continuation problems , 1994 .

[9]  E. Montroll,et al.  Anomalous transit-time dispersion in amorphous solids , 1975 .

[10]  T. Szabo,et al.  A model for longitudinal and shear wave propagation in viscoelastic media , 2000, The Journal of the Acoustical Society of America.

[11]  Wen Chen,et al.  Computations for a Breast Ultrasonic Imaging Technique and Finite Element Approach for a Fractional Derivative Modeling the Breast Tissue Acoustic Attenuation , 2008 .

[12]  A. Carasso THE APEX METHOD IN IMAGE SHARPENING AND THE USE OF LOW EXPONENT LÉVY STABLE LAWS , 2002 .

[13]  E.E. Pissaloux,et al.  Image Processing , 1994, Proceedings. Second Euromicro Workshop on Parallel and Distributed Processing.

[14]  Changpin Li,et al.  Fractional differential models for anomalous diffusion , 2010 .

[15]  J. Klafter,et al.  The random walk's guide to anomalous diffusion: a fractional dynamics approach , 2000 .

[16]  Lin Jianzhong,et al.  Numerical research on the coherent structure in the viscoelastic second-order mixing layers , 1998 .

[17]  R. Vilela Mendes,et al.  A fractional calculus interpretation of the fractional volatility model , 2009 .

[18]  Y. Chen,et al.  Variable-order fractional differential operators in anomalous diffusion modeling , 2009 .

[19]  U. Tautenhahn,et al.  Optimal stable approximations for the sideways heat equation , 1997 .

[20]  Hongguang Sun,et al.  Fractional diffusion equations by the Kansa method , 2010, Comput. Math. Appl..

[21]  Jian Bai,et al.  Fractional-Order Anisotropic Diffusion for Image Denoising , 2007, IEEE Transactions on Image Processing.

[22]  Thorsten Hohage,et al.  Regularization of exponentially ill-posed problems , 2000 .

[23]  Tongsong Jiang,et al.  A meshless method based on RBFs method for nonhomogeneous backward heat conduction problem , 2010 .

[24]  Pantaleón D. Romero,et al.  Blind Deconvolution Models Regularized by Fractional Powers of the Laplacian , 2008, Journal of Mathematical Imaging and Vision.

[25]  Fotios C. Harmantzis,et al.  Fractional Lévy motion and its application to network traffic modeling , 2002, Comput. Networks.

[26]  Wen Chen,et al.  A coupled method for inverse source problem of spatial fractional anomalous diffusion equations , 2010 .

[27]  Ulrich Tautenhahn,et al.  Optimality for ill-posed problems under general source conditions , 1998 .

[28]  R. Gorenflo,et al.  Discrete random walk models for space-time fractional diffusion , 2002, cond-mat/0702072.

[29]  A. Kirsch An Introduction to the Mathematical Theory of Inverse Problems , 1996, Applied Mathematical Sciences.

[30]  Xiang-Tuan Xiong,et al.  Fourier regularization for a backward heat equation , 2007 .