Operator scaling stable random fields

A scalar valued random field is called operator-scaling if for some dxd matrix E with positive real parts of the eigenvalues and some H>0 we have where denotes equality of all finite-dimensional marginal distributions. We present a moving average and a harmonizable representation of stable operator scaling random fields by utilizing so called E-homogeneous functions [phi], satisfying [phi](cEx)=c[phi](x). These fields also have stationary increments and are stochastically continuous. In the Gaussian case, critical Holder-exponents and the Hausdorff-dimension of the sample paths are also obtained.

[1]  P. Abry,et al.  Lois d'Echelle, Fractales et Ondelettes , 2002 .

[2]  Harold Auradou,et al.  Anisotropic self-affine properties of experimental fracture surfaces , 2006 .

[3]  Murad S. Taqqu,et al.  Theory and applications of long-range dependence , 2003 .

[4]  D. Percival,et al.  Analyzing exact fractal time series: evaluating dispersional analysis and rescaled range methods. , 1997, Physica A.

[5]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[6]  Walter Willinger,et al.  Self-similarity and heavy tails: structural modeling of network traffic , 1998 .

[7]  A Fourier formulation of the Frostman criterion for random graphs and its applications to wavelet series , 2003 .

[8]  Jacques Istas,et al.  Local self-similarity and the Hausdorff dimension , 2003 .

[9]  From N parameter fractional Brownian motions to N parameter multifractional Brownian motions , 2005, math/0503182.

[10]  D. Applebaum Stable non-Gaussian random processes , 1995, The Mathematical Gazette.

[11]  Tusheng Zhang,et al.  Local times of fractional Brownian sheets , 2002 .

[12]  A. Ayache,et al.  Asymptotic Properties and Hausdorff Dimensions of Fractional Brownian Sheets , 2005 .

[13]  O. Kallenberg Foundations of Modern Probability , 2021, Probability Theory and Stochastic Modelling.

[14]  Elias M. Stein,et al.  Hardy spaces on homogeneous groups , 1982 .

[15]  M. Meerschaert,et al.  Limit Distributions for Sums of Independent Random Vectors: Heavy Tails in Theory and Practice , 2001 .

[16]  P. Bruns,et al.  Long-term storage. , 2000, Methods in cell biology.

[17]  Anne Estrade,et al.  Anisotropic Analysis of Some Gaussian Models , 2003 .

[18]  Kenneth Falconer,et al.  Fractal Geometry: Mathematical Foundations and Applications , 1990 .

[19]  R. Adler,et al.  The Geometry of Random Fields , 1982 .

[20]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[21]  E. H. Lloyd,et al.  Long-Term Storage: An Experimental Study. , 1966 .

[22]  David A. Benson,et al.  Aquifer operator scaling and the effect on solute mixing and dispersion , 2006 .

[23]  Antoine Ayache,et al.  Hausdorff dimension of the graph of the Fractional Brownian Sheet , 2004 .

[24]  Rina Schumer,et al.  Multiscaling fractional advection‐dispersion equations and their solutions , 2003 .

[25]  R. Adler,et al.  A practical guide to heavy tails: statistical techniques and applications , 1998 .

[26]  G. Katul,et al.  Soil moisture and vegetation controls on evapotranspiration in a heterogeneous Mediterranean ecosystem on Sardinia, Italy , 2006 .