A Study on the Efficient R&D Theme Selection Method with Machine Learning
暂无分享,去创建一个
[1] Hisashi Kashima,et al. A Parameterized Probabilistic Model of Network Evolution for Supervised Link Prediction , 2007 .
[2] Masao Yamamoto,et al. A Journal Paper Filtering Using the Profile Revised by Patent Document Information , 2010 .
[3] Francis Narin,et al. Citation rates to technologically important patents , 1981 .
[4] Masao Yamamoto,et al. Journal paper filtering using multiple information , 2012 .
[5] Antti Uusitalo,et al. Technology competition in the internal combustion engine waste heat recovery: a patent landscape analysis , 2016 .
[6] Muguruma Masamichi. The usefulness of patent forward citation analysis and its practical examples. , 2006 .
[7] F. Narin,et al. Patents as indicators of corporate technological strength , 1987 .
[8] 佳之 山下. テキストマイニング技術の特許分析・特許検索実務への活用 特許検索・分析サービス「パテント・インテグレーション」 , 2010 .
[9] F. Narin,et al. Direct validation of citation counts as indicators of industrially important patents , 1991 .
[10] Robert M. Rosenzweig. The hazards of recombinant DNA: Stanford's patent application Natural selection effects , 1977 .
[11] Nathalie Sick,et al. Identifying trends in battery technologies with regard to electric mobility: evidence from patenting activities along and across the battery value chain , 2015 .
[12] Vanessa Oltra,et al. Variety of technological trajectories in low emission vehicles (LEVs) : a patent data analysis. , 2006 .
[13] Yusuke Sato,et al. A study of patent document score using patent-specific attributes in citation analysis , 2008 .
[14] Kazunari Tanaka. Multi - viewpoint clustering of patent documents , 2004 .
[15] Masao Yamamoto,et al. A Journal Paper Filtering Using the Multiple Information , 2011 .