The balloon-borne large-aperture submillimeter telescope for polarimetry: BLAST-Pol

The Balloon-borne Large Aperture Submillimeter Telescope for Polarimetry (BLAST-Pol) is a suborbital mapping experiment designed to study the role played by magnetic fields in the star formation process. BLAST-Pol is the reconstructed BLAST telescope, with the addition of linear polarization capability. Using a 1.8m Cassegrain telescope, BLAST-Pol images the sky onto a focal plane that consists of 280 bolometric detectors in three arrays, observing simultaneously at 250, 350, and 500μm. The diffraction-limited optical system provides a resolution of 30"at 250μm. The polarimeter consists of photolithographic polarizing grids mounted in front of each bolometer/ detector array. A rotating 4K achromatic half-wave plate provides additional polarization modulation. With its unprecedented mapping speed and resolution, BLAST-Pol will produce three-color polarization maps for a large number of molecular clouds. The instrument provides a much needed bridge in spatial coverage between larger-scale, coarse resolution surveys and narrow field of view, and high resolution observations of substructure within molecular cloud cores. The first science flight will be from McMurdo Station, Antarctica in December 2010.

[1]  James J. Bock,et al.  BLAST OBSERVATIONS OF RESOLVED GALAXIES: TEMPERATURE PROFILES AND THE EFFECT OF ACTIVE GALACTIC NUCLEI ON FIR TO SUBMILLIMETER EMISSION , 2009 .

[2]  G. Kowal,et al.  Studies of Regular and Random Magnetic Fields in the ISM: Statistics of Polarization Vectors and the Chandrasekhar-Fermi Technique , 2008, 0801.0279.

[3]  F. Adams,et al.  Star Formation in Molecular Clouds: Observation and Theory , 1987 .

[4]  Annie Zavagno,et al.  Filaments and ridges in Vela C revealed by Herschel: from low-mass to high-mass star-forming sites , 2011, 1108.0941.

[5]  M. Truch,et al.  The balloon-borne large aperture submillimeter telescope , 2007 .

[6]  A. Lazarian,et al.  Radiative torque alignment: essential physical processes , 2007, 0707.3645.

[7]  P. A. R. Ade,et al.  MAXIPOL: Cosmic Microwave Background Polarimetry Using a Rotating Half-Wave Plate , 2006, astro-ph/0611394.

[8]  D. Wiebe BLAST: A Balloon-borne, Large-aperture, Submillimetre Telescope , 2009 .

[9]  R. Larson Turbulence and star formation in molecular clouds , 1980 .

[10]  Department of Physics,et al.  Simulations of polarized dust emission , 2006, astro-ph/0609143.

[11]  James M. Stone,et al.  Density, Velocity, and Magnetic Field Structure in Turbulent Molecular Cloud Models , 2000, astro-ph/0008454.

[12]  F. Markley Attitude Error Representations for Kalman Filtering , 2003 .

[13]  E. Ostriker,et al.  Theory of Star Formation , 2007, 0707.3514.

[14]  James J. Bock,et al.  BLAST: A FAR-INFRARED MEASUREMENT OF THE HISTORY OF STAR FORMATION , 2009, 0904.1206.

[15]  Jessie L. Dotson,et al.  A Primer on Far‐Infrared Polarimetry , 2000 .

[16]  Jessie L. Dotson,et al.  Submillimeter Polarimetric Observations of the Galactic Center , 2000 .

[17]  D. Hartmann,et al.  The Milky Way in Molecular Clouds: A New Complete CO Survey , 2000, astro-ph/0009217.

[18]  G. Novak,et al.  DISPERSION OF OBSERVED POSITION ANGLES OF SUBMILLIMETER POLARIZATION IN MOLECULAR CLOUDS , 2007, 0707.2818.

[19]  W. Cudlip,et al.  Far infrared polarimetry of W51A and M42 , 1982 .

[20]  Edward J. Wollack,et al.  Three Year Wilkinson Microwave Anistropy Probe (WMAP) Observations: Polarization Analysis , 2006, astro-ph/0603450.

[21]  M. Juvela,et al.  The Average Magnetic Field Strength in Molecular Clouds: New Evidence of Super-Alfvénic Turbulence , 2003, astro-ph/0311349.

[22]  S. Masi,et al.  First detection of polarization of the submillimetre diffuse galactic dust emission by Archeops , 2003, astro-ph/0306222.

[23]  U. Seljak,et al.  An all sky analysis of polarization in the microwave background , 1996, astro-ph/9609170.

[24]  H. Shinnaga,et al.  New Results on the Submillimeter Polarization Spectrum of the Orion Molecular Cloud , 2008, 0803.4185.

[25]  Giampaolo Pisano,et al.  Achromatic half-wave plate for submillimeter instruments in cosmic microwave background astronomy: modeling and simulation. , 2006, Applied optics.

[26]  Patrick Thaddeus,et al.  A Composite CO survey of the entire Milky Way , 1987 .

[27]  Telemachos Ch. Mouschovias,et al.  Magnetic Fields and Star Formation: A Theory Reaching Adulthood , 1999 .

[28]  N. Jessop The initial conditions of star formation , 1999 .

[29]  Giampaolo Pisano,et al.  A review of metal mesh filters , 2006, SPIE Astronomical Telescopes + Instrumentation.

[30]  A. Chepurnov,et al.  Polarization of Dust Emission in Clumpy Molecular Clouds and Cores , 2006, astro-ph/0611324.

[31]  S Masi,et al.  Instrument, Method, Brightness and Polarization Maps from the 2003 flight of BOOMERanG , 2005, astro-ph/0507509.

[32]  N. Soker,et al.  Possible implications of mass accretion in Eta Carinae , 2008, 0802.0167.

[33]  A. Lazarian,et al.  Grain Alignment by Radiation in Dark Clouds and Cores , 2005 .

[34]  E. Zweibel,et al.  Magnetic field-line tangling and polarization measurements in clumpy molecular gas , 1990 .

[35]  Shaul Hanany,et al.  Millimeter-wave achromatic half-wave plate. , 2005, Applied optics.

[36]  T. Montroy,et al.  Modeling dielectric half-wave plates for cosmic microwave background polarimetry using a Mueller matrix formalism. , 2010, Applied optics.

[37]  Albert Stebbins,et al.  Statistics of cosmic microwave background polarization , 1997 .

[38]  James J. Bock,et al.  BLAST: RESOLVING THE COSMIC SUBMILLIMETER BACKGROUND , 2009, 0904.1205.

[39]  C. E. Jones,et al.  The Intrinsic Shapes of Molecular Cloud Fragments over a Range of Length Scales , 2002 .

[40]  F. O. Alves,et al.  Optical polarimetry toward the Pipe nebula: revealing the importance of the magnetic field , 2008, 0806.1189.

[41]  S. Basu,et al.  FORMATION OF COLLAPSING CORES IN SUBCRITICAL MAGNETIC CLOUDS: THREE-DIMENSIONAL MAGNETOHYDRODYNAMIC SIMULATIONS WITH AMBIPOLAR DIFFUSION , 2010, 1012.5707.

[42]  J. Hough,et al.  The Efficiency of Grain Alignment in Dense Interstellar Clouds: a Reassessment of Constraints from Near-Infrared Polarization , 2007, 0711.2536.

[43]  A. Giorgio,et al.  Recent star formation in the Lupus clouds as seen by Herschel , 2012, 1211.5232.

[44]  David J. Schlegel,et al.  Extrapolation of Galactic Dust Emission at 100 Microns to Cosmic Microwave Background Radiation Frequencies Using FIRAS , 1999, astro-ph/9905128.

[45]  Richard R. Harman Wilkinson Microwave Anisotropy Probe (WMAP) Attitude Estimation Filter Comparison , 2005 .

[46]  University of Chicago,et al.  Statistical Assessment of Shapes and Magnetic Field Orientations in Molecular Clouds through Polarization Observations , 2009, 0907.3730.

[47]  L. Mestel The Magnetic Field of a Contracting Gas Cloud: I. Strict Flux-freezing , 1966 .

[48]  David T. Chuss,et al.  First Results from the Submillimeter Polarimeter for Antarctic Remote Observations: Evidence of Large-Scale Toroidal Magnetic Fields in the Galactic Center , 2003 .

[49]  Mark J. Devlin,et al.  BLAST autonomous daytime star cameras , 2006, SPIE Astronomical Telescopes + Instrumentation.

[50]  Matthew Joseph Griffin,et al.  SPIRE - Herschel's Submillimetre Camera and Spectrometer , 2003, SPIE Astronomical Telescopes + Instrumentation.

[51]  R. Haynes,et al.  Southern H II regions: an extensive study of radio recombination line emission , 1987 .

[52]  James J. Bock,et al.  Design and performance of feedhorn-coupled bolometer arrays for SPIRE , 2003, SPIE Astronomical Telescopes + Instrumentation.

[53]  Luca Olmi,et al.  Optical designs for submillimeter-wave spherical-primary (sub)orbital telescopes and novel optimization techniques , 2002, SPIE Astronomical Telescopes + Instrumentation.

[54]  Alyssa A. Goodman,et al.  Optical polarization maps of star-forming regions in Perseus, Taurus, and Ophiuchus , 1990 .

[55]  T. Mouschovias,et al.  The effect of ambipolar diffusion on magnetic braking of molecular cloud cores: an exact, time-dependent solution , 1986 .

[56]  P. A. R. Ade,et al.  New artificial dielectric metamaterial and its application as a terahertz antireflection coating. , 2009, Applied optics.

[57]  G. Chattopadhyay,et al.  Feed horn coupled bolometer arrays for SPIRE - design, simulations, and measurements , 2003 .

[58]  James J. Bock,et al.  SUBMILLIMETER NUMBER COUNTS FROM STATISTICAL ANALYSIS OF BLAST MAPS , 2009, 0906.0981.

[59]  A. Murphy,et al.  The Planck High Frequency Instrument, a third generation CMB experiment, and a full sky submillimeter survey , 2003 .

[60]  D. Ward-Thompson,et al.  First Observations of the Magnetic Field Geometry in Prestellar Cores , 2000 .

[61]  Eugene N. Parker,et al.  Sweet's mechanism for merging magnetic fields in conducting fluids , 1957 .

[62]  Sihon H. Crutcher,et al.  Spatial Beam Propagation with a Perturbation in a Nonlinear Medium with Power Law , 2010 .

[63]  D. Ward-Thompson,et al.  SCUBA Polarization Measurements of the Magnetic Field Strengths in the L183, L1544, and L43 Prestellar Cores , 2003, astro-ph/0305604.

[64]  J. Hough,et al.  Interstellar Extinction and Polarization in the Taurus Dark Clouds: The Optical Properties of Dust near the Diffuse/Dense Cloud Interface , 2001 .

[65]  Enrico Fermi,et al.  Magnetic fields in spiral arms , 1953 .

[66]  Gopal Narayanan,et al.  Large-Scale Structure of the Molecular Gas in Taurus Revealed by High Linear Dynamic Range Spectral Line Mapping , 2008, 0802.2206.

[67]  M. Halpern,et al.  Breaking the ‘redshift deadlock’– I. Constraining the star formation history of galaxies with submillimetre photometric redshifts , 2001, astro-ph/0111547.

[68]  W. White,et al.  A CMB polarization primer , 1997 .

[69]  F. H. Shu,et al.  Collapse of Magnetized Singular Isothermal Toroids. II. Rotation and Magnetic Braking , 2003 .

[70]  P. Zeeman,et al.  XXXII. On the influence of magnetism on the nature of the light emitted by a substance , 1897 .

[71]  P. Cortés,et al.  Interferometric Mapping of Magnetic Fields: G30.79 FIR 10 , 2006, astro-ph/0607357.

[72]  B. Zuckerman,et al.  Radio radiation from interstellar molecules , 1974 .

[73]  K. Tomisaka SUPERBUBBLES IN MAGNETIZED INTERSTELLAR MEDIA : BLOWOUT OR CONFINEMENT ? , 1998, astro-ph/9804029.

[74]  S. Hubrig,et al.  Magnetic Fields , 2015, Physics Problems for Aspiring Physical Scientists and Engineers.

[75]  R. F. Loewenstein,et al.  Results of SPARO 2003: Mapping Magnetic Fields in Giant Molecular Clouds , 2006 .

[76]  H. Leduc,et al.  A broadband superconducting detector suitable for use in large arrays , 2003, Nature.

[77]  David T. Chuss,et al.  Early Results from SPARO: Instrument Characterization and Polarimetry of NGC 6334 , 2004 .

[78]  Zhi-Yun Li,et al.  Quiescent Cores and the Efficiency of Turbulence-accelerated, Magnetically Regulated Star Formation , 2005, astro-ph/0502130.

[79]  T. Mouschovias Magnetic braking, ambipolar diffusion, cloud cores, and star formation: Natural length scales and protostellar masses , 1991 .

[80]  James J. Bock,et al.  BLAST: THE MASS FUNCTION, LIFETIMES, AND PROPERTIES OF INTERMEDIATE MASS CORES FROM A 50 deg2 SUBMILLIMETER GALACTIC SURVEY IN VELA (ℓ ≈ 265°) , 2009, 0904.1207.

[81]  James J. Bock,et al.  BLAST: CORRELATIONS IN THE COSMIC FAR-INFRARED BACKGROUND AT 250, 350, AND 500 μm REVEAL CLUSTERING OF STAR-FORMING GALAXIES , 2009, 0904.1200.

[82]  M. Halpern,et al.  The Balloon-borne Large-Aperture Submillimeter Telescope for polarization: BLAST-pol , 2008, Astronomical Telescopes + Instrumentation.

[83]  Mark E. Pittelkau,et al.  Kalman Filtering for Spacecraft System Alignment Calibration , 2001 .

[84]  Itziar Aretxaga,et al.  Over half of the far-infrared background light comes from galaxies at z ≥ 1.2 , 2009, Nature.

[85]  James J. Bock,et al.  Bolocam: a millimeter-wave bolometric camera , 1998, Astronomical Telescopes and Instrumentation.

[86]  The Structure and Evolution of Molecular Clouds: from Clumps to Cores to the IMF , 1999, astro-ph/9902246.

[87]  Frank H. Shu,et al.  Magnetized Singular Isothermal Toroids , 1996 .

[88]  E. M. Arnal,et al.  Starlight polarization and CO observations towards the Lupus clouds , 1998 .

[89]  P. Ade,et al.  Achromatic half-wave plate for submillimeter instruments in cosmic microwave background astronomy: experimental characterization. , 2006, Applied optics.

[90]  E. Ostriker,et al.  Magnetically Aligned Velocity Anisotropy in the Taurus Molecular Cloud , 2008, 0802.2084.

[91]  P. Padoan,et al.  A Super-Alfvénic Model of Dark Clouds , 1999, astro-ph/9901288.