Direct electric field control of the skyrmion phase in a magnetoelectric insulator

[1]  Y. Tokura,et al.  Transition to and from the skyrmion lattice phase by electric fields in a magnetoelectric compound , 2016, Nature Communications.

[2]  J. White,et al.  Dramatic pressure-driven enhancement of bulk skyrmion stability , 2015, Scientific Reports.

[3]  C. Pfleiderer,et al.  Uniaxial Pressure Dependence of Magnetic Order in MnSi. , 2015, Physical review letters.

[4]  Y. Tokura,et al.  Uniaxial stress control of skyrmion phase , 2015, Nature Communications.

[5]  Yoshio Watanabe,et al.  Writing a skyrmion on multiferroic materials , 2015, 1511.08433.

[6]  Kang L. Wang,et al.  Electric-field guiding of magnetic skyrmions , 2015, 1505.03972.

[7]  J. White,et al.  A new class of chiral materials hosting magnetic skyrmions beyond room temperature , 2015, Nature Communications.

[8]  Kang L. Wang,et al.  Blowing magnetic skyrmion bubbles , 2015, Science.

[9]  Yan Zhou,et al.  Magnetic skyrmion logic gates: conversion, duplication and merging of skyrmions , 2014, Scientific Reports.

[10]  Hans Fangohr,et al.  Skyrmion-skyrmion and skyrmion-edge repulsions in skyrmion-based racetrack memory , 2014, Scientific Reports.

[11]  G. Finocchio,et al.  A strategy for the design of skyrmion racetrack memories , 2014, Scientific Reports.

[12]  J. White,et al.  Electric-field-induced Skyrmion distortion and giant lattice rotation in the magnetoelectric insulator Cu2OSeO3. , 2014, Physical review letters.

[13]  Y. Tokura,et al.  Thermally driven ratchet motion of a skyrmion microcrystal and topological magnon Hall effect. , 2014, Nature materials.

[14]  J. White,et al.  Note: versatile sample stick for neutron scattering experiments in high electric fields. , 2014, The Review of scientific instruments.

[15]  J. White,et al.  Exploration of the helimagnetic and skyrmion lattice phase diagram in Cu2OSeO3 using magnetoelectric susceptibility , 2013, 1310.1094.

[16]  Y. Tokura,et al.  Topological properties and dynamics of magnetic skyrmions. , 2013, Nature nanotechnology.

[17]  A. Fert,et al.  Skyrmions on the track. , 2013, Nature nanotechnology.

[18]  You-Quan Li,et al.  Skyrmion dynamics in multiferroic insulators , 2012, 1209.3120.

[19]  C. Pfleiderer,et al.  Fluctuation-induced first-order phase transition in Dzyaloshinskii-Moriya helimagnets , 2012, 1205.4780.

[20]  J. White,et al.  Electric field control of the skyrmion lattice in Cu2OSeO3 , 2012, Journal of physics. Condensed matter : an Institute of Physics journal.

[21]  Y. Tokura,et al.  Magnetoelectric nature of skyrmions in a chiral magnetic insulator Cu2OSeO3 , 2012, 1206.4404.

[22]  H. Berger,et al.  Two-step transition in a magnetoelectric ferrimagnet Cu2OSeO3 , 2012, 1205.5100.

[23]  C. Pfleiderer,et al.  Rotating skyrmion lattices by spin torques and field or temperature gradients , 2012, 1204.5051.

[24]  H. Berger,et al.  Magnetoelectric effects in single crystals of the cubic ferrimagnetic helimagnet Cu2OSeO3 , 2012, 1204.3783.

[25]  H. Berger,et al.  Long-wavelength helimagnetic order and skyrmion lattice phase in Cu2OSeO3. , 2012, Physical review letters.

[26]  Y. Tokura,et al.  Observation of Skyrmions in a Multiferroic Material , 2012, Science.

[27]  Y. Tokura,et al.  Skyrmion flow near room temperature in an ultralow current density , 2012, Nature Communications.

[28]  P. Böni,et al.  Spin Transfer Torques in MnSi at Ultralow Current Densities , 2010, Science.

[29]  H. Berger,et al.  Ferrimagnetism of the magnetoelectric compound Cu2OSeO3 probed by 77Se NMR , 2010, 1008.2010.

[30]  C. Pfleiderer,et al.  Skyrmion lattice in the doped semiconductor Fe1-xCoxSi , 2009, 0903.2587.

[31]  P. Böni,et al.  Skyrmion Lattice in a Chiral Magnet , 2009, Science.

[32]  T. Arima Ferroelectricity Induced by Proper-Screw Type Magnetic Order(Condensed matter: electronic structure and electrical, magnetic, and optical properties) , 2007 .

[33]  N. Nagaosa,et al.  Microscopic theory of spin-polarization coupling in multiferroic transition metal oxides , 2007, cond-mat/0701614.